Searches for hybrid mesons

- Expectations for hybrid mesons
- Exotic quantum numbers $(J^{PC} = 1^{-+})$

Diffraction:

$$\pi^- N \rightarrow \eta \pi^- N$$

$$\pi^- N \rightarrow \eta^{\cdot} \pi^- N$$

$$\pi \bar{\ } N \rightarrow b_1 \pi N$$

$$\pi$$
 - $N \rightarrow \rho^0 \, \pi$ - N

$$\pi^- N \rightarrow \eta \pi^- \pi^- \pi^+ N$$

Charge exchange:

$$\pi^- p \rightarrow \eta \pi^0 n$$

$$\pi \bar{p} \rightarrow \eta \tilde{n}$$

• Features of π (1800)

Expectations for hybrid mesons

$$q\;\overline{\overline{q}}$$

normal

 $q \overline{q} + SU(3)_f$ singlet hybrids

mesons

q q mesons:

$$P=(-1)^{L+1}$$
 $C=(-1)^{L+S}$

$$P=(-1)^{L+1}$$
 $C=(-1)^{L+S}$ $J^{PC}=0^{-+}, 1^{--}, 0^{++}, 1^{++}, 2^{++}, 1^{+-}$

Hybrid mesons can have exotic quantum numbers (Okun', Vainshtein 76)

$$J^{PC}_{exotics} = 1^{-+} 0^{+-} 2^{+-} 0^{--} \dots$$

$$J^{PC} = 1^{-+} : \pi_1$$

$$J^{PC} = 0^{-+} : \pi(1800)$$

Model predictions for hybrid mesons

Hybrids were studied in:

Potential models, Bag models, Flux tube model, QCD sum rules, Lattice QCD.

As a rule models predict that exotic hybrid resonance π_1 does exist.

Prediction for mass: $M(\pi_1) = 1.6 \div 2.1 \text{ GeV}$

Specific prediction of QCD sum rules: $M(\pi_1) - M(\pi_1) \approx 0.2 \text{ GeV}$

Predictions for decay widths are very model dependent:

Methods of hunting, problems

- search for "additional" states with normal quantum numbers
- search for "unusual" decays(suppression of decays to states with identical space wave functions, decays to {8}+{1})
- search for mesons with exotic quantum numbers
- Main problem large nonresonance background.
 - normal mesons:

The wave J^{PC}=1⁻⁺ in diffractive reactions $\pi^- A \rightarrow \eta \pi^- A$

VES, 1993, $P_{\pi} = 37 \text{ GeV}$ (confirmed by BNL) $2000 \, P_{\pi} = 28 \, \text{GeV}$

The amplitude depends on 5 variables: $s, t, M_{\eta\pi}, \theta, \varphi$

Assuming full coherency at fixed s, t, $M_{\eta\pi}$ the intensity could be written as:

$$I(\Omega) = |\Sigma_{J,M} a^{J}_{M} F^{J}_{M}|^{2} + |\Sigma_{J,M} a^{J}_{M} F^{J}_{M}|^{2}$$

$$I(\Omega) = |\sum_{J,M} a_{M}^{J} F_{M}^{J}|^{2} + |\sum_{J,M} a_{M+}^{J} F_{M+}^{J}|^{2} + |\sum_{J,M} a_{M+}^{J}|^{2} + |\sum_{J,M} a_{M+}^$$

Seven waves:

S0, P0, P-, D0, D-; P+, D+

The wave \mathbf{D} + dominates: a2(1320) and broad signal at m>1.4GeV

The wave P+ is clearly seen. This wave does not demonstrate narrow structures.

 $\pi^- A \to \eta \ \pi^- A$ Mass-dependent fit of D+ and P+ waves in $\eta \ \pi$

The results are fitted equally well by broad resonance in P+, as well as by background with constant phase.

Summary on exotic wave $I^G J^{PC} = 1 - 1^{-+}$ at M=1.4 GeV

•	1. GAMS	1988	$\pi^- p \rightarrow \eta \pi^0 n$	M -1406+-20 MeV
•	2. KEK	1993	$\pi^- p \rightarrow \eta \pi^- p$	M=1323+-5 MeV Γ =143+-12 MeV
•	3. VES	1993	$\pi^- N \rightarrow \eta \pi^- N$	Broad signal at M=1.4 GeV
•	4. E-852	1997	$\pi^- p \rightarrow \eta \pi^- p$	M=1370+-60 MeV Γ =380+-90 MeV
•	5. CB	1998	n p $\rightarrow \eta \pi^- \pi^0$	M=1400+-30 MeV Γ=310+-90 MeV
•	6. GAMS	1998	$\pi^- p \rightarrow \eta \pi^0 n$	Broad signal without BW phase
•	7. GAMS	1999	$\pi^- p \rightarrow \eta \pi^0 n$	Mass dependent fit without resonance
•	8. E-852	2003	$\pi^- p \rightarrow \eta \pi^0 n$	

• Main problems: relative phase of 1-+ and 2++ waves is unmeasurable

the phase of 2++ wave is not known at M>1.45GeV

different experiments give very different results

the signal looks like ordinary nonresonant background

• Conclusion: experimental results do not lead to unambiguous conclusion on the existence of exotic resonance at $M \approx 1.4 GeV$

$\pi^-A \rightarrow \eta^{\prime} \pi^-A$ PWA and mass-dependent fit of D+ and P+ waves in $\eta^{\prime} \pi$

Two signals are clearly seen:

- the decay $a_2 \rightarrow \eta^{\tilde{}} \pi^-$ (VES, 1992)
- large signal in exotic wave P+ at $M(\eta^* \pi^-) \approx 1.6$ GeV. This result was confirmed by E852 recently.

The results are fitted equally well/bad by broad resonance in **P+**, as well as by background with constant phase.

More complicated model is needed to describe possible fine structure at $M \approx 1.6\text{-}1.8 \text{ GeV}$

A.Zaitsev, Protvino

Tokio 25.02.03

Comparison of η π and η , π

The diffractive-like production of η π^- and η ' π^- in P-wave is described by one amplitude:

Therefore one and the same P-wave resonance has to be seen in η π^- and η , π^- .

We do not see statistically significant structures in η π^- P-wave around M \approx 1.6 GeV. To make analysis less model-dependent we can look at mass-spectra without PWA and sum-up all VES runs to increase statistics. The signal expected in η π^- is shown by red curve. This signal is not seen in the η π^- mass-spectrum. Possible irregularities at 1.75 GeV and 1.85 GeV have pure statistical significance.

The reaction $\pi - A \rightarrow b_1 \pi A$

VES, 1997,
$$P_{\pi} = 37 \text{ GeV}$$

2000 r, $P_{\pi} = 28 \text{ GeV}$

The reaction under study is $\pi^- A \to \pi^+ \pi^- \pi^- \pi^0 \pi^0 A$ The resonance $b_1(1235)$ was selected in the chanel $\omega(\pi^+ \pi^- \pi^0) \pi$

- a) Intensity D+
- b) Intensity P+
- c) Coherency D+ P+
- d) Real part of interferece term D+ P+
- e) Imaginary part of interferece term D+ P+
- f) Relative phase D+/P+

D+ wave: $a_2(1320)$ and broad bump at M=1.7 GeV

P+ wave: broad irregular structure. Rapid variation of Im(D+/P+) points to possible resonance at M=1.6÷1.8 Γ 9B

The reaction $\pi^- A \rightarrow f_1 \pi^- A$

VES, 1995,
$$P_{\pi} = 37 \text{ GeV}$$

2002, $P_{\pi} = 28 \text{ GeV}$

The reaction under study is: $\pi^- A \rightarrow \pi^+ \pi^- \pi^- \eta A$ The resonance $f_1(1285)$ was selected in the channel $\eta \pi^+ \pi^-$

- b) Intensity of P+
- c) Relative phase P+/D+

Most intensive wave $J^PM\eta=1^+0^+$ has maximum at M=1.7 GeV No indication to resonances in exotic wave $J^{PC}M\eta=1^{-+}1^+$.

The reaction $\pi^- A \rightarrow \pi^+ \pi^- \pi^- A$

VES, 1995, $P_{\pi} = 37 \text{ GeV}$ 2000, $P_{\pi} = 28 \text{ GeV}$

Clear resonances are seen in waves: $J^{PC}=1^{++}$, 2^{++} , 2^{-+} , 0^{-+} , 4^{++} Broad exotic wave $I^G(J^{PC})=1^-(1^{-+})$ is clearly seen in the channel $\rho\pi$ with very low intensity ~2% of the a_2 signal (next slide).

No evidence of narrow resonance at $M \approx 1.6 \text{ GeV}$ (difference with E852).

Conclusion on JPC=1⁻⁺ in diffractive reactions

Exotic wave $I^G(J^{PC})=1^-(1^{-+})$ is clearly seen in a number of reactions. There are indications on the existence of exotic resonance in the channel $b_1 \pi$ (and probably in η ` π -) at $M=1.6\div1.8$ GeV

Charge exchange reactions

VES, 2003, preliminary

Comparison of charge exchange and diffractive reactions shows that mass-spectra of all four reactions are very different. The most spectacular difference is between $\eta' \pi^0$ and $\eta' \pi^-$.

η'π-

Question: why bump at 1.65 GeV is not seen in $\eta' \pi^0$?

Answer: P-wave in $\eta' \pi^0$ is not SU(3)_f-singlet, it is fourquark state (next slide).

A.Zaitsev, Protvino

Tokio 25.02.03

$SU(3)_f$ structure of $J^{PC}=1^{-+}$ waves in η ' π and $\eta\pi$ channels

It follows from $SU(3)_f$ -symmetry that in diffractive-like reactions only one P-wave amplitude is allowed: $\{8\}+\{1\} \rightarrow \{8\}+\{1\}$

Therefore in these reactions the ratio of P-wave amplitudes is expected as : $R=A(\eta'\pi)/A(\eta\pi)=1/tg(\theta)_{PS}$. Experiments confirm this prediction. It does not depend whether P-wave is resonant or not.

In case of charge exchange reactions the $SU(3)_f$ -symmetry allows P-wave amplitudes with two octets in final state ($\{8\}+\{8\}$). Hybrid ($SU(3)_f$ -octet) can not decay to two octets in P-wave contrary to four-quark states, which can do it ($\{10\}$, $\{27\}$). Experimental data show that for charge exchange reactions the P-wave in $\eta'\pi^0$ -channel is suppressed, therefore multiquark states ($\{10\},\{27\}$) are dominating in $\eta'\pi^0$ P-wave.

Features of π (1800) Is it nonexotic hybrid?

The resonance π (1800) is seen in following channels:

 $f_0(980) \pi$, $\epsilon \pi$, $a_0 \eta$, $f_0(1500) \pi$.

Probably the same signal is seen in $\omega \rho$.

It is suppressed in $\rho \pi$ и K*K.

(VES, 1993-1999)

 π (1800): hybrid?

 $3^{1}S_{0}$?

K* K[₹] molecule?

Main features:

- suppression of decays to V P (hybrids in FT model, $3^{1}S_{0}$)
- decay to $f_0(1500) \pi$ (hybrids)
- abnormally high branching to $f_0(980) \pi$ (???)

One resonance or more?

Spread of M($\pi(1800)$) from one decay channels to another one points to possible existence of two different 0^{-+} states.

The reaction $\pi^- A \rightarrow \pi^+ \pi^- \pi^- A$

VES, 1997, $P_{\pi} = 37 \text{ GeV}$

TE ...

The f_0 / ϵ puzzle

It is expected that for conventional hybrids $(I^GJ^{PC}=1^{-0^{-+}})$ as well as for second radial excitations of pion (3^1S_0) the decay $\pi(1800) \rightarrow f_0(980) \pi$ is suppressed in comparison to $\pi(1800) \rightarrow \epsilon \pi$ (here ϵ is broad π S-wave object describing $f_0(600)+f_0(1370)$).

The reason is that $f_0(980)$ is coupled to srange quarks, it's narrow,

the ϵ is coupled to u,d quarks, it's broad. d

VES: BR(
$$\pi(1800) \rightarrow f_0(980) \pi$$
) $\approx \overline{\mathbf{u}}$
BR($\pi(1800) \rightarrow \varepsilon \pi$)

This puzzle could be resolved assuming that these decays proceed via **emission of SU(3)_f singlet** instead of tube/string breaking. The state

$$f_0\{1\} \approx 1/\sqrt{2} \ (\mathcal{E} + f_0(980)) \ \text{looks like SU(3)}_f \text{ singlet.}$$

Decay $\pi(1800) \rightarrow \{1\} + \{8\}$ is natural one if $\pi(1800)$ "consists of" $\mathbf{q} \ \mathbf{q}$ (in ${}^{1}S_{0}$ state?) and (scalar?) SU(3)_f singlet excitation ("glue", "bag", longitunal excitation of flux tube etc)

Conclusions

- Exotic wave $J^{PC} = 1^{-+}$ is seen in a number of reactions
- Broad bump at M=1.4 GeV in $\eta\pi$ could be described equally well with or without resonance
- There are some indications on exotic resonance $J^{PC}=1^{-+}$ in $\eta'\pi$ and $b_1\pi$ at $M=1.7\div 1.8$ GeV
- Charge exchange reactions with $J^{PC}=1^{-+}$ in $\eta\pi$ and $\eta'\pi$ channels proceed via multiquark intermediate states
- Features of the $\pi(1800)$ decays point to possible existence of new excitations in hadrons (scalar, SU(3)_f-singlet)