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© From Yukawa to M-Theory (S.Tanaka, 2003 2/24)

Let me first refer to the historical background of my talk. I moved
to Kyoto university at the end of 1957. Professor Yukawa(1907~8 1
was just 50 aged. He was in the middle of research of nonlocal field
theory. I remember that he was at these days highly sensitive to the
new proposal of Heisenberg’s Nonliner Spinor Theory(1953), which
was regarded as a work aiming at “a unified theory of universe”.
| Surely, at these days, every things seemed exciting to us. Let me cite
several important works at these days:
Heisenberg: S-Matrix( fundamental length 7,) (1943)
Yukawa: Nonlocal Field Theary (1947) - [H 03
7‘) Snydep Yang: Quantized Space-Time (1947) | - - L¥p. Xyl F 0
Tomonaga, Schwinger, et al: Renormalization theory (1948)
Fermi-Yang: Composite Model of n-meson (1949)
Pauli-Villars: Regularization (1950)
Heisenberg: Nonlinear Spinor Theory (1953)
Yang-Mills: Nonabelian Gauge Theory (1954)
Sakata: Composite model of Hadrons (1956)
Here I remember also Philosophical and methodological disputes |
between Sakata and Yukawa about their different approaches in
Composite Theory and Nonlocal Theory, as was seen later.

$ Yukawa’s Challenge on Conventional “Spacetime and Local Field
Theory” (1934) | (- g X 1@ )
Yukawa’s full-scale investigation of Nonlocal theory begins in
1940’s, it should be noted, however, that its original idea goes back to
April, in 1934, to our surprise, just in midst of proposal of his Meson
Theory” In the annual meeting of P-M Society, he talked
Cr?io’s - : .
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“On Provability Amplitude in Relativistic Quantum

Mechanics” (@ﬁ%@ws@)

ina strong sympathy with Dirac’s similar idea
“Generalized Transformation Function” \(Dirac, 933)

Here, Dirac proposed Generalization of Conoeﬂtof Probability in -
Quantum Mechanics, (by introducing Integral of lagrangian density
over “Arbitrary form of Space-time region.” |

Yukawa tried to find in this Diracs idea a possibility of
fundamental breakthrough to overcome the so-called

“Divergence Difficulty in Quantum Field Theory,”
which was explicitly pointed out by the famous paper of Heisenberg-
Pauli (1929) and gave serious influences on Yukawa ovér all his life to

* solve the problem. It ultimately led him to the firm belief: . |

“Fundamental Particles must never be point-like, but
have their own proper space-time extension.”

In fact, he tried to apply the above Dirac’s action integral over
arbitrary space-time region to the minimal space-time region of the
order of Heisenberg’s fundamental length vb, by assuming that m
such a minimal region, Conventional Causal Relation between
definite initial and final times, t, ,t, no longer holds, and
{Inseparability between Cause and Effect becomes essential in sucha
small region relevant to the fundamental length of elementary

particles} ,
Conventional Cause-Effect Inseparable Cause-Effect
£t ., @
Aol a2
@
Cause
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We find that this idea revives nearly 30 years later in his Theory of

Elementary Domain (1966).
$ Bilocal Field Theory |
On the challenge to nonlocal field theory, howe\%exg which begins in a
full-scale in 1947, Yukawa seems still careful to directly accept the
above idea of minimal region, but leaving space-time concept
untouched, and attempted to introduce nonlocal field &/which is non-
commutative with space-time coordinates

[U, Xp] # 0
in accord with Markow(1940). Under the space-time coordinate
representation basis, .
| %,>, < lgx,1=0

the above relation immediately leads us to the Bilocal field:

Ulsx) = <%l Ulx>=U(X,,5)
that is, bilocal field or two-point field U (X,, Xu’ ) is rewritten in terms
'
. _ , . Y
of oentex}{of mord]{‘j‘é?ﬁ X, = (X, +x%x, )/ 2 and internal

coordinates:

— 3
L = X - X.
As seen in the so-called FierZ's Expansion (1950),

UX,,r) = 2@-[‘10‘ ?gLuZu&---ﬁk(X-'-a r) Foiuus.un(r)

- - - = . e

Bilocal Field turns out to be the infinite ensemble of local
component fields @ ,; 5,5 . ,i (X) with various spin (k)

This fact suggests that nonlocal field theory gives a possibility of
- ."U_m'ﬁe.d description of elementary Particles”.
On the other hand, however, it leads us aéain to Unwanted Local
Component Fields D ,; 5,3 . 41 (X), possibly connected with &/ V

e — R ——




divergence difficulty. (Fierz, Hara-Shimazu(1950)).
Yukawa expected that this dilemma might be overcome by virtue
of the nonlocal interactions of local component fields, whose nonlocal
form-factor could suitably reflect the whole effects of local component
fields and the proper spatial extension of original bilocal fields.
However, there remained unsolved many important questions
concerning causahty or unitarity, other than the divergence problem, ') ¢
all of which, I believe, & Joft unsolved even in the present :
Super-string theory, as will be remarked finally.

$ From Bilocal to Multi-local field S S
Although Yukawa’s bilocal field theory was formulated premsely
and rigorously (1949) under the Lorentz-covariance, the reciprocity |
principle (Born, 1938), the correspondence principle to the local field
theory and so on, the bilocal field itself seemed to be tpo limited to
describe hadrons in general, so Yukawa and his collaborators tried to
extend the bilocal field as two-point function to multi-point fields:
Uz, %) — U&E%x7x°.
One sees, however, that this extension lacks a definite principle to
formulate itself in contrast to bilocal field theory, but seems rather to
@ the wave-functions of many-body system in the
composite model' of hadrong .
$ Urciton scheme (Ishida, 197 1) | | |
In this connection, I would like here-to notice Professor Ishida’s
Urciton scheme (1971) as an attempt to_connect both ideas of
Yukawa’s nonlocal theory and Sakata’s composite theory, by
introducing the@ into hadromc level, which seems
somewhat related to Yukawa's Elementary Domam or the present-
day D(irechlet)-branes in Superstring theories stated later.




$ String model in the first stage or Pre-String theory (1968~)
The situation drastically changed, when the extreme limit of multi-

point field was related to string field or string model of one-
dimensionally extended object , x,(0);

-l o
U(xp(ﬂ”xp wa(?!).'__) — U(x“(o.))’ | .,..: __*?/-—‘

-P’P

which appeared immediately after Veneciano model (1968) devised
for the explanation of the dual behavior of Regge-poles and
resonances in high energy hadron reactions, and developed. into the
present-day Super-String Theories. | '
$ Elementary Domain (1966) |
Before going into the problem, let us mention bneﬂy on the "
Yukawa’s 1idea of Elementary Domain. This was his first and ﬁnal.
challenge to space-time structure 1tse]£ in stead of simple
modification of point model of elementa particles as in Nonlocal
field. As seen in the title of the first paper (1966), .
_ “Atomistics and the Divisibility of Space and Time”,
it is clear that it originates in the idea of “Minimal space-time
region” proposed nearly 30 years ago, explained before in detail.
Yukawa tried to describe the minimal region, that is, the so-called
Elementary domain D, in terms of various parameters:
i) Centerof Domain

Xp = [pdfx x,/ Vp
i) Moments of Extension
IMLM2 = [pd*x(x,; -X,1)...(x,,—X n)IVD‘

They are to be observables describing various modes of deformamon

or excitation of an elementary domain, gach of which are considered
to correspond to the different kinds of elementary particles.

5 Speentime Detcsffons of Blowstry F 4




Yukawa and his collaborators tried to introduce Difference
Equation in place of usual differential equations, which gives the
connection between the deformations of adjacent elementary
domains. The theory, however, remained unaccomplished.

Yukawa left the following statement (1978): “ If one proceeds along
this way, it might ultimately lead to the problem of quantization of
space-time itself The concept of Elementary Domain may be
msufficient, because of the fact that it still presumes behind it

Minkowski-space or the four-dimentional continuum. The solution, |

however, leaves entirely in the future.” T~ \ﬂ"’ 9'“*\..4; s i Reve YR feon

P £k %4
At this point, it is quite interesting’to notice several important

topics in the recent development of superstring theory, which seem
deeply related to this Yukawa’s concern or his long-sought goal. They
are exemplified by the ideas of D(richlet)-branes or Holographic
Hypothesis, stated below.

$ M-Theory

As was already remarked, the original string theory appeared as
hadron models at the end 1960 The situation drastically changed
in the middle of@gs, when the closed string theory seems to have a
possibility of presenting naturally theoretical frameworks of
quantum gravity as well as gauge theory. In fact, after the middle of

980’33 specially Superstring Theory turned to be expected as a
nified Theory of fundamental forces and matters in Nature
including gravity.
During the past decade, especially afoer@ which is called the
second stage of Superstring theory, it occurred that the familiar five
superstring theories are unified (Witten, 1995), that is,

TYPE-I TYPE-IA, IIB, and two Hetrotic String theories all



formulated in D=10 are ynified into a single fundamental theory,
the so-«zﬂa@theom [-theory, ok S-theory in a hidden higher
dimensional space-time, (]_)=11, 12, or 13).
$ Analogy with Quantum Mechanics in 1920’s

The situation is sometimes expressed on the analogy of the well-
known historical experience of the Upification of Schrédinger’s Wave-
Mechanics and Heisenberg’s Matrix-Dynamics at the birth of
quantum mechanics in /4920’s)] where it became clear that both
approaches were merely ge’to the different choice of representation
bases in Hilbert space. o

As a matter of fact, the concept of string itself as a linearly

extended object, is not necessarily so drastic, but rather naturally

conceivable in the continuous limit of multi-point particle system.

On the contrary, the so-called Dirichlet-branes seem more radical:
@%: p-dimensionally Fxtended Objects
were Intr

(Polchinski, 19955 in the course of research of

Superstrings, and played an important role in m of various 7 :;f

kinds of Superstring models mentioned above.\ In‘v‘s?ﬁit follows, 1 fjé

would like to point out their important properties. .‘
(i) Dp brane as Constraints on the End of Open String |

D(chlet) p brane was originally introduced | D Lnaiin

through the Direchlet boundary condition / [ P

imposed on the open string, where the end. ‘ .

points of open string are partially constrained 5%, o'/f/{' ) o?‘)

on some p-dimensional hypersurface described
with p continuous variables, 0, 05 ... 0,

together with time parameter T . This p-

dimensional Hypersurface is nothing but D-p brane:




Under the suitable choice of coordinates
in D-dimensional space, the space-time
configuration of a D-p brane can be

_ gribed in terms of (D —p —1) coordinates :
p105...0,) i=p+l,p+2,.. D1
ch are transverse to the remaining the
so-called (p+1) world(-volume) coordinates,
X ,= (t, 0, Og ... Op) |

(ii) (UQt))gauge field A, @) living on(@ Dp brane>
~ andCreation: Annihilation of Closed String.

It is quite important to r;;)te that open string with both ends
constrained on the same Dp brane produces Ul)-gauge field, A (x)
living on the Dp brane, which is one of the mass-less modes of the
open string and regarded as a local component field encountered in

Fierz decomposition of bilocal field. S - 4/ ( / 7

"'-*-

In addition, it is noticeable that a Dp brane A ,LC =)
is concerned with creation and annihilation of
closed string which is made through the joint .
of both ends of a open string on the Dp brane. a&m’f‘
These aspects lead us sometimes to the 17 &
interesting view: “Dp brane is a Space-time — b
Aabs.

Wall to the fundamental strings.
(i) __@Yanng]]sGauge Fields living on
and Noncommutative Position Coordinates of Dp branes '
Ifthere exis N Dp brans), it becomes possible that open strings
have their ends constrained on different D branes and each U(1) gauge
field on the respective Dp branes tends to produce NxN UN)
Yang-Mills Gauge Fields, <m | A z )| n >, when N Dp branes precisely
are on top of

gy N
<.m[/4 ()|




Furthermore, in this case, there arises a very intérésting fact in
describing the position coordinates of NDp branes: Indeed, each Dp
coordinate X * ( x, ) given in (i), tends to Nx N matrlxﬁ)rmhke-.l‘. o

U@ﬁyﬂﬁ@
<m|X'(x,)In> mn=12...N

Diagonalpart, <n|X'(x,)|n>

may be naturally interpreted to describe
the position coordinates of n-th Dp brane
and Nondiagonal part;

<m |X'(x ) In> (m # n)

is explained due to the interaction between | > X’:
m-th and n-th Dp branes by the open string.

In this way, we encounter the idea of the noncommutative
position coordinates of Dp branes (Witten, 1995), that is,
Entirely Unexpected Idea from original string theories.

(1iv) p-brane Democracy and Superalgebra ‘

Dp brane so far explained might be seen still somewhat secondary
existence, in comparison with the fundamental strings. But it is quite
important to see that their existence is well-founded in the frame work
of Superalgebra, such like Osp(1 | 32), in accordance with the
idea of the so-called p-brane democracy (Townzend, 1995).

As was stated in (i), D-p branes interacts with open and closed
strings. The interactions take place through a local tensor currents or
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charges constructed by X' (x ,)
) D-pbrane > J.g u102.00 ® 2 Zpipe.

(X(x,))  (current) (charge)
that is, Currents ( Charges ) of anti-symmetric tensor character of
orden p+1.(.p) which interact with various local gauge fields ( Fierzs
local component fields) supplied by massless modes of Superstrings
Grv,Buv,®;Cu,Auvo, ¢, Buv, Cuvop) familiar in .
supergravity theories. | o

The so-called p-brane democracy is guaranteed by the fact that
the above charges, Z,;.5. . constructed by p-branes in general,-
together with Supercharges, constitute a specific Superalgebra, like

{Qa , QB }'"' E.p . .(I‘ulnz .up) af Zu1n2...up:

[ Qo Zyrpr 1= Q, [Ze, Z.=Z...
What types of Superalgebra should be chosen is a central concern in
seeking for M-theory, ¥-theory or S-theory posably lying behind the
present Superstring theories. It can be regarded in a sense as a
fundamental set of observables of space-time (Einstein,1930).
Ortho-symplectic group Osp(1{32), for instance, is recently
noticed by many authors as a promising candidate for M-theory,

. where 32 is the maximal number of Supercharges.

Do brane and Yukawa’s Elementary Domain
In the preceding arguments, ()~Gv), I tried to summarize the
remarkable aspects of D branes, with a certain expectation that the
objects might be one of the promising candidates to reach the goal
which Yukawa aimed through his elementary domain, but did not
gechieve. At this point, I should like to notice the next paper:
M Theory as A Matrix Model: A Conjecture
(Banks, Fischer, Shenker, Susskind; 1996)
In this paper, one finds that Do brane with p=0, sometimes called D-
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particle, is regarded as the fundamental constituents of
Superstrings, and the supersymmetric matrix quantum mechamm of
N —body system of D-particles is proposed through the following
Lagrangian:

L~fdc {Zomi 12<nl Xi(o)lm><m|X (0)ln> + 3

defined on the 11-dimensional light-cone frame. A Wf et M%”’”

At a glance, D-particle seems to be a usual point-like particle, if we
neglect the nondiagonal part of X'( 7), the first term in L just being
kinetic terms of Nbody system of D-particles. It recalls to us
the fundamental constituents which we have seen in the early string
mode] as an infinite limit of multi-local field.

However, one has to remember (i) that D-particle is defined as a
constraint on the ends of open string, and thus can never be
separable from its background, just like the exciton or urciton.

Furthermore, one should remember that in the N D-particles
system, the position coordinates as a whole must be described by N x
Nnoncommutative matrices, as seen in (iii).

These facts naturally lead us, -BZH¥ beyond the above idea of
noncommutative position coordinates of D-particles, to the idea of
noncommutative space-time, that is, a definite departure from the
continuous space-time itself, which was seriously sought in the
Yukawa'’s elementary domain.

$ Snyder-Yang’s Quntized Space-time (1947)

11

At this point, one should recall the idea of Snyder-Yang’s Quantized
space-time (1947), sometimes remarked above. Needless to say, the
Snyder-Yang’s theories were proposed with the aim of solving
ultraviolet divergence by virtue of the quantized or discrete space-time
in place of the naive cutoff procedure.



| 12
It is quite important to note that, among many recent proposals of

. noncommutative space-time algebra, Snyder-Yang’s space is discrete U)
but Lorentz-covariant, as was emphasized by Yang (1965).

In addition, it should be pointed out that especially Yang’s space-
time algebra is deeply related to {Euclidean) Conformal Algebra and to cen
de Sitter (dS) algebra, all of which have the common symmetry group Cat )
(see Appendix). Indeed, the latter symmetry is noticed rémarkably in
the recent M-theory, the so-called @ / CFI‘ @_,;n@ or |

1 1s,/as explained later. ‘
aking into consideration these ‘points, 1 attempted recently
relativistic second quantization of the above quantum mechanics of D-
particles system, which makes possible the creation-annihilation of D-
particles, by introducing second-quantized D-particle field defined on
the Yang’s quantized space-time (hep-th/0002001).
$ Yang’s Space-time Algebra
D-dimensional Yang’s quantized space-time and momentum
are introduced via the dimensional contraction of SO (D+1,1) angular
momentum operator, MN, with two extra dimensions, a andb;

Xu E@.)Z,ua, Pu 1/ -Eub, (r=12...,D)

where ( 2MNy= i(YMO/0YN —YNO/OYM). M, N=(u,ab)

and {Ya} are (D+2)- dimensional Yang’s parameters with M =(u, a,b),
1=D being a time-like and 4, b two space- -

like extra dimensio One finds that o f f . .2:'_“’,5
[Xp,Xv] =i Zuw, 1 i‘gbo | ‘ {
[Pu,Pv] = @Euv th e e ;

and spatial components, Xi and Pi have - MM ;’ix,

discrete eigenvalues, in units o 1\ and@ : (97\00: } 8“'

12 L Dl me$ 1
“‘*"‘*"f""‘""-"..)q,;_m 01/{/
(B B R
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$ M-Theory and Divergence Problem | '
---Holographic Hypothesis and IR / UV Connection
Now I would like to proceed to the final topics, the DivergenceProblem,
which was a central concern of Yukawa and much discussed in the
recent Superstring theory, in the form of IR/lUV'connection or the
holographic renormalization. The holographic hypothesis is nicely
expressed by Susskind- Wltten(1998) in the following way:
“A macroscopic (bulk) region of space and every thing inside it can be
represented by a boundary theory living on the boudary of the region”
“Furthermore, the boundary theory should not contain more than one
degree of freedoms per Planck area. .,.One might imagine that

the boundary theory is cutoﬁ' or discrete so that the
information density ishound.” 5 4 Aavy

In the above argument, Type IIB silpersu'ing Theory with gravity
(AdS 5) in a bulk, and UN) - Super Yang-Mills Theory on the boundary
(Conformal field theory) are nicely set up through the mediation of
D3 branes (Maldacena, 1997), and a single cutoff parameter & leads
us in a unified way to the regularization of both the infrared
divergence in the bulk theory and the ultraviolet divergence in the
boundary conformal theory, that is, to the regularized Bekenstein-
Hawkmg area-entropy relation, the so-called IR/UV connection or

holographic renormalization. % Aé,‘jc ,4 /L 4
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Concluding Remarks

(I) Do branes and Yukawa’s Elementary Domain

14

I have pointed out several important results in the recent rapid
development of superstring theory or M-theory, which seem to me
deeply related to the fundamental problems of space-time. Especially I
noticed the concept of DO branes as the fundamental constituent of
superstring, in close accord with Yukawa’ s Elementary Domain.

() Divergence Problem in Superstring Theory

On the other hand, however, we very often encounter various kinds
of Divergences related to Local Fields as massless modes of
superstrings. At this point, we wonder why the ultraviolet
divergences appear even in the superstnng theory, while many
authors assert that this problem a]ready d1sappeared by virtue of
nonlocality and super-symmetry mtrms1c to the superstring theory.

This fact recall us the Yukawa's argument on the F&erz’s local
component fields in bilocal field theory, that is, ¢ ‘Possible divergences
accompanied with local component: fields rmght be ultimately solved by
taking into account the total effects of mﬁmte numbér of local
component fields” The naive cutoff or regulanzatlon procedure
discussed, for mstanoe, in the so-m]]ed UV/IR connection n
Superstring theory (see Susskind-Witten,1998), might be understood
as an effective substitute for such ultimate or exact calculations.

{II) Yang’s Quantized Space-Time and Cutoff

I would like to emphasize again a possibility of the field theory on
Yang's quantized space-time : (i) It has the Common Symmetry to the
dS/ CFT correspondence and (ii) Discrete structure of its space-time
and momentum may provide a theoretical ground for the unified cutoff

of UV-IR divergences. In order to arrive at the consistent divergence-

free theory, however, many problems must be left in the future. -
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Appendix Yang’s Quantized Space-time Algebra
o and dS / CFT Correspondence
Although the group-theoretical origin of dS/CFT correspondence is
well- known, in this Appendix we show that the extended Snyder-
Yang’s quantized space-time algebra explained in the text also relates
to the (Euclidean) conformal algebra, through the different
representation bases of the same SO(D+1,1) symmetry.
- As was shown in the text, the space-time coordinates and
momentum operators in Yang’s quantized space-time algebra, are
_given by
Xu =41 Xua Al
- Pu VR Zub, | A2
with suitable units £ and R, together with the reciprocal operator
between them,

N =1 XY ab L .. A.3)
and D-demensional angular momentum, | |
Mpyv =2up v, N A4

Here, 2MN with M,N = (1,3, b) is angular momentum operator

of S(D+1,1) expressed in terms of Yang's (D+2)-dimensional
parameter space { YM }:

2MN = i(YMé’/o”YN —~ W3/3Yn ), | A 5)

M N=(z,8b)
~withu=12,..., D, u=D being a time-like, 2 and b two space-
like extra dimensions.

As was emphasized by Yang, it is quite important to see that
space-components (u=i)of Xp andPpu:
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Xi = A%ia =i A(Yid/FYa—Ya 3/FYi), A1)’

Pi =UVR Zib =¢/R (Yid/d¥b — Yb 3/3Yi), (A2)’
with i=1,2,...D-1, have discrete eigenvalues under units of 2

and 1/R, respectively, and contrarily time-components,
Xo(= -iXp)= 1 Yoa

=id(Yod/9Ya + Ya 3/3Y0), @1)”
Po(= -iPo) =1/R Zob |
=/R(Yo3/IMb + ¥b 3/3Y0) A2

with Yo=- ¥ p, have continuous eigenvalues.

Now let us examine the D-dimensional Huclidean

conformal algebra derived from the same SO(D+1,1). In fact,
in this case, choosing 0 and b directions as the extra two
dimensions with opposite metric signature, their generators
{D, P u, K u M uv} with u, v= (g, i=1,2,..., D-1) are given
by
D =%ob=1Y03/3 + Y6 3/3 Yo, A 6)
Pu+Ku = Zou=i(Yod/dYu+Yu 3/3¥), A7)
Pu-Ku = Zbu=i(Ybd/dYu—-Yu 3/00), (A8

~ together with

Muv = Xuv= i (Yad/d¥vw-Yv 3/31u). A 9
From the above expresssions, one sees that Pu+ K uvand IV
have continuous eigenvalues and P’ u — K uand M’ uv have
discrete eigenvalues. Consequently, as was pointed out in the
text, the momentum operators P u ( K u ), which are
commutative among themselves,  have continuous
eigenvalues. This remarkable fact in contrast to Yang’s
algebra can be seen, for instanse, in the following form,
Pi=i2{Yo3/3Yi + Yi 3/7Yo + Yb3/FYi~ Yi 3/3 I}

(A 10)
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Finally let us examine D+1 dimensional de Sitter

Algebra dSp, ;, which is also concerned with the same
SO(D+1,1) and may be well related to the Yang's quantized
space-time algebra, likely to the conformal algebra familiar

mn the holographic hypothesis. In fact, the generators of dSp, ;
are defined by

Pa= /R 2ab | (A.11)
Mapg = 2afp A.12)
with «,B8= (@, u=1.2,...,D). They are directly expressed
in terms of those of Yang’s algebra ( Xu, Pu, Mu v, N)
in the following form:
Pa : Pu(=LR 2ub)=Pp, -

Pa=1/R Xab)=1/(RA)N. (A.13)
MapB : Mev E2uv)=Mpv,

Mpra=-Mar(=2pra)= (Vi)Xe. (A1
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