

Hadron Mass Spectrum from Lattice QCD

Lattice studies of N* spectrum

A puzzle in nucleon excited states

How to compute the nucleon mass

Consider time-ordered, 2pt function:

$$N(t)\overline{N}(0)\rangle_{\alpha\beta} = \sum_{\vec{x}} \langle 0|T\{N_{\alpha}(\vec{x},t)\overline{N}_{\beta}(\vec{0},0)\}|0\rangle$$

interpolating operator: $N = \varepsilon_{abc} q_a q_b q_c$ with J=1/2, I=1/2

The lowest-lying state dominates for large t

$$\left\langle N(t)\overline{N}(0)\right\rangle_{\alpha\beta} = (1+\gamma_4)_{\alpha\beta}\theta(t)A_Ne^{-M_Nt} + (1-\gamma_4)_{\alpha\beta}\theta(-t)A_Ne^{+M_Nt}$$

nucleon anti-

anti-nucleon

Particle contribution:

$$\operatorname{Tr}\left\{P_{+}\left\langle N(t)\overline{N}(0)\right\rangle\right\} \sim e^{-M_{N}t}$$
 with the projection operator $P_{+} = (1+\gamma_{4})/2$

Spin-1/2 interpolating operators

Baryon operators under SU(2)_LxSU(2)_R

 \checkmark belong to the (1/2,0)+(0,1/2) chiral multiplet

✓ without derivative

J^P=1/2⁺ operator:

 $N_1^+ = \varepsilon_{abc} (u_a^T C \gamma_5 d_b) u_c$ and $N_2^+ = \varepsilon_{abc} (u_a^T C d_b) \gamma_5 u_c$

J^P=1/2⁻ operator: $N_i^- = \gamma_5 N_i^+$ $N_1^- = \varepsilon_{abc} (u_a^T C \gamma_5 d_b) \gamma_5 u_c$ and $N_2^- = \varepsilon_{abc} (u_a^T C d_b) u_c$

It turns out that $\langle N^{-}(t)\overline{N}^{-}(0)\rangle = -\gamma_{5}\langle N^{+}(t)\overline{N}^{+}(0)\rangle\gamma_{5}$ $\langle N^{+}(t)\overline{N}^{+}(0)\rangle \approx (1+\gamma_{4})\theta(t)A_{N_{+}}e^{-M_{N_{+}}t} + (1-\gamma_{4})\theta(-t)A_{N_{+}}e^{+M_{N}t}$ (positive parity) $-(1+\gamma_{4})\theta(-t)A_{N_{-}}e^{+M_{N_{-}}t} - (1-\gamma_{4})\theta(t)A_{N_{-}}e^{-M_{N_{-}}t}$ (negative parity)

Wrap-around effect

Nucleon excited states in lattice QCD

To resolve the remaining puzzle

Need information in the lighter quark mass region

- Analysis to take account of higher lying states
 - **Maximum Entropy Method**

Ι.

- II. Finite size effect might be serious for excited states
 - Large physical volume > (2.0 fm)³
- III. Similarity of the level pattern is found in the Δ channel
 - Not only spin-1/2 baryon but also spin-3/2 baryon

Measure the hadron masses in lattice QCD

Traditional approach: Asymptotic analysis

$$D(\tau) = \int d^3x \left\langle h(\vec{x},\tau)h^+(0,0) \right\rangle$$

$$=\sum_{n} \left| \left\langle 0 \left| h \right| n \right\rangle \right|^{2} e^{-M_{n}\tau} \xrightarrow[\tau \to \infty]{} e^{-M_{0}\tau}$$

Allow us to fit only the large-τ behavior of a hadron correlator

- → Data truncation
- → Discard information for exicted states

Spectral functions in lattice QCD

Nakahara, Asakawa, Hatsuda, PRD60 (99) 091503 PPNP46 (01) 459 pseudo-scalar, vector, scalar, axial-vector Yamazaki (CP-PACS collaboration), PRD65 (02) 014501 pseudo-scalar, vector (continuum limit)

Application only for mesons !!

Maximum Entropy Method (MEM)

Spectral function A(ω) gives us much information

But, the reconstruction of $A(\omega)$ from $D(\tau)$ is not unique !

Assume : the probability of $A(\omega)$ can be assigned for given $D(\tau)$ →The most probable $A(\omega)$ is inferred from P[A|D]

$$A_{\text{imag}}(\omega) = \int [dA] A(\omega) \cdot P[A \mid D]$$

Note: the posterior probability P[A|D] is not the conditional probability of $D(\tau)$ given $A(\omega)$; P[D|A] (the likelihood function)

More about MEM

Bayesian statistics

$$P[D \mid A] \propto e^{-\chi^2/2}$$

Information entropy (Shanon-Jaynes)

 $m(\omega)$: default model α : the entropy strength

$$P[A] \propto e^{\alpha S} = \exp\left\{\alpha \int_0^\infty d\omega \left[A(\omega) - m(\omega) - A(\omega) \ln\left(\frac{A(\omega)}{m(\omega)}\right)\right]\right\}$$

[Bryan's method]

To find the maximum of P[A|D] with respect to A(ω) at fixed D(τ), • Minimize Q= $\chi^2/2-\alpha$ S to use singular value decomposition (SVD)

Asakawa, Hatsuda, Nakahara, PPNP46 (01) 459, for more detail

Details of the simulation

4 quark masses (M_{π} / M_{ρ} = 0.69 – 0.91)

Point source - Point sink

P.B.C. + A.P.B.C. for the temporal direction

Basic result:

K_c=0.1568(15)

Nucleon and Delta Spectral functions

Results for 16³x32 lattice at β **=6.0**

Large finite-size effect on the N' state

Infinite volume limit

• All data is well fitted by the 1 / L³ curve

Level switching between N' and N*

Summary

Maximum entorpy method is applied to quenched baryon spectrum with Wilson fermions

 $\hfill\square$ Succeed in extracting N and Δ spectral functions

- Can extract the mass of first excited states
- Find unphysical states around $\omega a \sim 2.0$ and 3.0

1

Î

Confirm the large finite-size effect on the N' state in the light quark mass region

- ✓ Spatial lattice size La ~ 2.2 fm is not large enough
- The level switching between N' and N* should happen in lattice simulations with large spatial size La > 3.0 fm
- The Roper resonance can be described by the simple three quark excitation of sizable extent

Opposite finite-size effect on N* to N and N'

The N* mass on the larger lattice (L=24) is higher than on the smaller lattice (L=16) by an amount of order 5%. (JLab/UKQCD, 2002)

Ín

