Numerical Calculations of Excited Baryon Masses in Lattice QCD

Shoichi Sasaki (Univ.of Tokyo)

References:
S. Sasaki, T. Blum and S. Ohta, PRD65 (02) 074503
S. Sasaki, K. Sasaki, T. Hatsuda and M. Asakawa, hep-lat/0209059

Hadron Mass Spectrum from Lattice QCD

Experimental results are reproduced to within about 5-10\% errors.

] But this success is restricted to ground states, and does not fully apply to excited states

Lattice studies of N* spectrum

— Lee-Leinweber
D $\square 34$ action hep-lat/9809095, D234 action, hep-lat/0011060, 0110164.
] Sasaki-Blum-Ohta (RIKEN-BNL)
Domain wall fermion, hep-lat/9909093, Phys. Rev. D65 (2002) 074503.

- Richards et al (UKQCD-QCDSF-LHPC)

Clover fermion, hep-lat/0011025, Phys. Lett. B532 (2002) 63.

- Melnitchouk et al (Adelaide)

Fat-link clover fermion, hep-lat/0202022.
(Nakajima-Matsufuru-Nemoto-Suganuma
Clover fermion \& anisotropic action, hep-lat/0204014.
\square
...............

A puzzle in nucleon excited states

Experiment

Potential Models
Naive quark model Bag model
] Need lattice QCD calculation to resolve it.

How to compute the nucleon mass

Consider time-ordered, 2pt function:

$$
\begin{aligned}
& \langle N(t) \bar{N}(0)\rangle_{\square \square}=\square_{\vec{x}}\left\langle 0 T\left\{N_{\square}(\vec{x}, t) \bar{N}_{\square}(\overrightarrow{0}, 0)\right\} \mid 0\right\rangle \\
& \quad \text { interpolating operator: } N=\square_{a b c} q_{a} q_{b} q_{c} \text { with } \mathrm{J}=1 / 2, \mathrm{I}=1 / 2
\end{aligned}
$$

The lowest-lying state dominates for large t

$$
\langle N(t) \bar{N}(0)\rangle_{\square \square}=\frac{\left(1+\square_{4}\right)_{\square \square} \square(t) A_{N} e^{\square M_{N} t}}{\text { nucleon }}+\frac{\left(1 \square \square_{4}\right)_{\square \square} \square(\square t) A_{N} e^{+M_{N} t}}{\text { anti-nucleon }}
$$

Particle contribution:

$$
\operatorname{Tr}\left\{P_{+}\langle N(t) \bar{N}(0)\rangle\right\} \sim e^{\square M_{N} t} \quad \text { with the projection operator } P_{+}=\left(1+\square_{4}\right) / 2
$$

Spin-1/2 interpolating operators

Baryon operators under SU(2) $)_{\llcorner } \times S U(2)_{R}$

\square belong to the $(1 / 2,0)+(0,1 / 2)$ chiral multiplet
\square without derivative
$J P=1 / 2^{+}$operator:

$$
\begin{aligned}
& N_{1}^{+}=\square_{a b c}\left(u_{a}^{T} C Z_{5} d_{b}\right) u_{c} \quad \text { and } \quad N_{2}^{+}=Z_{a b c}\left(u_{a}^{T} C d_{b}\right) Z_{z} u_{c} \\
& \text { JP=1/2- operator: } N_{i}^{\square}=L_{5} N_{i}^{+} \\
& N_{1}=\square_{a b c}\left(u_{a}^{T} C \square_{5} d_{b}\right) \square_{5} u_{c} \text { and } N_{2}{ }^{\square}=\square_{a b c}\left(u_{a}^{T} C d_{b}\right) u_{c}
\end{aligned}
$$

It turns out that $\left\langle N^{\square}(t) \bar{N}^{\square}(0)\right\rangle=\square_{5}\left\langle N^{+}(t) \bar{N}^{+}(0)\right\rangle \square_{5}$

$$
\begin{aligned}
&\left\langle N^{+}(t) \bar{N}^{+}(0)\right\rangle \square\left(1+\square_{4}\right) \square(t) A_{N_{+}} e^{\square M_{N_{+}} t}+\left(1 \square \square_{4}\right) \square(\square t) A_{N_{+}} e^{+M_{N} t} \quad \text { (positive parity) } \\
& \square(1+\square \square) \square(\square t) A_{N_{\square}} e^{+M_{N_{\square}} t} \square\left(1 \square \square_{4}\right) \square(t) A_{N_{\square}} e^{\square M_{N_{\square} t} t} \quad \text { (negative parity) }
\end{aligned}
$$

Wrap-around effect

After projection with operator P_{+}

Finite extent T with (anti-) periodic boundary condition

$$
\operatorname{Tr}\left\{P_{+}\left\langle N^{+}(t) \bar{N}^{+}(0)\right\rangle\right\}
$$

$$
b= \begin{cases}+1 & (\mathrm{PBC}) \\ \square 1 & (\mathrm{APBC})\end{cases}
$$

$$
\begin{aligned}
& \sim A_{N_{+}} e^{\square M_{N_{+}} t} \square b \cdot A_{N_{\square}} e^{+M_{N_{\square}}(t \square T)} \quad \text { for } T / 2>t>0 \\
& \sim \square A_{N_{\square}} e^{+M_{N_{\square}} t}+b \cdot A_{N_{+}} e^{\square M_{N_{+}}(t+T)} \text { for } \square T / 2<t<0
\end{aligned}
$$

— Necessary to take an appropriate boundary condition

Nucleon excited states in lattice QCD

DWF calculation $16^{3} \times 32 \times 16$ at beta $=6.0$

S. Sasaki, T. Blum, S. Ohta, PRD65 (02) 074503
] Large mass splitting of $N(939)$ $N^{*}(1535)$ is observed.

- $M_{N} \square 1.0 \mathrm{GeV}$ and $\mathrm{M}_{\mathrm{N}^{*}}{ }^{*} 1.6 \mathrm{GeV}$.
D. good agreement with the experimental value.
] $N^{\prime}(1440)$ state is heavier than N* state (in the heavy quark region).
- inverted level order?
- missing the Roper $\mathbf{N}^{\prime}(1440)$?

Possible systematic errors

- quenching
- finite lattice spacing
- non-negligible higher states contribution
- finite volume effect

To resolve the remaining puzzle

Need information in the lighter quark mass region
I. Analysis to take account of higher lying states
] Maximum Entropy Method
II. Finite size effect might be serious for excited states
] Large physical volume $>(2.0 \mathrm{fm})^{3}$
III. Similarity of the level pattern is found in the \square channel
(Not only spin-1/2 baryon but also spin-3/2 baryon

Measure the hadron masses in lattice QCD

Traditional approach: Asymptotic analysis

$$
\begin{aligned}
D(D) & =\square d^{3} x\left\langle h(\vec{x}, \square) h^{+}(0,0)\right\rangle \\
& =\square_{n}\langle 0 \mid h n\rangle^{2} e^{\square M_{n} D} \square_{\text {别 }} e^{\square M_{0} D}
\end{aligned}
$$

— Allow us to fit only the large- \square behavior of a hadron correlator

- Data truncation
- Discard information for
exicted states

Spectral functions in lattice QCD

Nakahara, Asakawa, Hatsuda, PRD60 (99) 091503 PPNP46 (01) 459 pseudo-scalar, vector, scalar, axial-vector Yamazaki (CP-PACS collaboration), PRD65 (02) 014501 pseudo-scalar, vector (continuum limit)

Application only for mesons !!

MEM analysis

Maximum Entropy Method (MEM)

\square Spectral function $A(\square)$ gives us much information

$$
D(\square)=\square d \square A(\square) e^{\square \square \square} \quad \begin{aligned}
& \text { Input: } \quad \mathrm{N}_{\square} \sim \mathrm{O}(10) \\
& \text { Output: } \mathrm{N}_{\square} \sim \mathrm{O}(100-1000)
\end{aligned}
$$

But, the reconstruction of $A(\square)$ from $D(\square)$ is not unique !
Assume : the probability of $A(\square)$ can be assigned for given $D(\square)$ The most probable $A(\square)$ is inferred from $P[A \mid D]$

$$
\left.A_{\mathrm{imag}}(\square)=\square d A\right] A(\square) \cdot P[A \mid D]
$$

Note: the posterior probability $\mathrm{P}[\mathrm{A} \mid \mathrm{D}]$ is not the conditional probability of $D(\square)$ given $A(\square) ; P[D \mid A]$ (the likelihood function)

More about MEM

Bayesian statistics

$$
\begin{aligned}
& \text { posterior probability } \\
& P[A \mid D]
\end{aligned}=\frac{P[D \mid A] P[A]}{P[D]_{\text {evidence }}} P[D \mid A] P[A]
$$

- Central limiting theorem

$$
P[D \mid A] \quad e^{\square D^{2} / 2}
$$

— Information entropy (Shanon-Jaynes)

$$
\begin{aligned}
& m(\square): \text { default model } \\
& \square: \text { the entropy strength }
\end{aligned}
$$

$$
P[A] \quad e^{\square S}=\exp \left\{\square \square d \square \square A(\square) \square m(\square) \square A(\square) \ln =\frac{A(\square)}{\square(\square)} \square \square\right\}
$$

[Bryan's method]
To find the maximum of $P[A \mid D]$ with respect to $A(\square)$ at fixed $D(\square)$,
\square Minimize $Q=\square^{2} / 2-\square S$ to use singular value decomposition (SVD)

Details of the simulation

Gauge: Standard plaquette action $\square=6.0, \mathrm{a}^{-1} \square 2.0 \mathrm{GeV}$ three lattice sizes $32^{3} \times 32, \mathrm{~V} \square(3.0 \mathrm{fm})^{3}, 200$ configs $24^{3} \times 32, \mathrm{~V} \square(2.2 \mathrm{fm})^{3}, 300$ configs $16^{3} \times 32, \mathrm{~V} \square(1.5 \mathrm{fm})^{3}, 444$ configs
Fermion: Wilson fermions
4 quark masses ($M_{\square} / M_{\square}=0.69-0.91$)
Point source - Point sink
P.B.C. + A.P.B.C. for the temporal direction

Basic result:

$$
\mathrm{K}_{\mathrm{c}}=0.1568(15)
$$

Nucleon and Delta Spectral functions

MEM analysis beta $=6.0, \mathrm{~V}=24^{3} \times 32$ (Wilson fermions)

$$
\square_{\max } a \sim 2 \square, N_{\square} \sim O(500), m_{0} a=4 \times 10^{-3}(N), 8 \times 10^{-3}(\square)
$$

Nucleon channel

Delta channel

Baryonic bound state of doublers?

CP-PAC collaboration already found the mesonic bound state of doublers (Yamazaki et al., PRD65 (02) 014501)

Results for $16^{3} \times 32$ lattice at $[=6.0$

Large finite-size effect on the N' state

The observed size effect is much larger for the (physical) excited state than for the ground state

Light ($m_{\square} \sim 0.6 \mathrm{GeV}$)

Heavy ($\mathrm{m}_{\sim} \sim 1.1 \mathrm{GeV}$)

Infinite volume limit

- All data is well fitted by the $1 / L^{3}$ curve

light

Spatial size:

heavy
\square The finite-size effect is rather severe in the lighter quark mass region

Level switching between N^{\prime} and N^{*}

Summary

Maximum entorpy method is applied to quenched baryon spectrum with Wilson fermions
\square Succeed in extracting N and \square spectral functions

- Can extract the mass of first excited states
\square Find unphysical states around $\square \mathbf{a} \sim 2.0$ and 3.0
— Confirm the large finite-size effect on the N' state in the light quark mass region

■ Spatial lattice size La~2.2 fm is not large enough

- The level switching between N^{\prime} and N^{*} should happen in lattice simulations with large spatial size La > 3.0 fm
\square The Roper resonance can be described by the simple three quark excitation of sizable extent

Opposite finite-size effect on N^{*} to N and N^{\prime}

The N^{*} mass on the larger lattice ($\mathrm{L}=24$) is higher than on the smaller lattice (L=16) by an amount of order 5\%. (JLab/UKQCD, 2002)

Multi-hadron state???

No, it can't be !

$M_{N \Pi}<\sqrt{M_{N}{ }^{2}+p_{\min }{ }^{2}}+\sqrt{M_{\Pi}{ }^{2}+p_{\min }{ }^{2}}$

where $p_{\min }=\frac{2 \square}{a L} \quad$ and $\quad M_{\square}=M_{\square}$

