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The clothed states of unstable particles are investigated on the basis of quantum field cheory,
and thereby a new mathematical notion, complex distribution”, is introduced. “Then the exact
eigenstate of rotal Hamiltonian with the complex eigenvalue, whose real part represents the mass of
the unstable particle and whose imaginary part is interpreted as the half reciprocal of its liferime, can
be constructed by means of the complex distribution. But this state is not observable. The physical
state of the unstable particle therefore is defined as an approximate state of the exact eigenstate, which
exhibits physically reasonable behaviours. .

§ 1. Iantrodunction

Recently many authors investigated the theory of unstable particles.”~9 "Especially,
Araki et al.” proposed two methods for naturally defining the physical mass and the
lifetime of an unstable particle. The corresponding Z-factors are also defined, but they can
take values larger than unity contrary to the stable case. Naito® investigated the produc-
tion and decay of an unstable particle in the stationary treatment, and defined its physical
state, which was formally identical with the approximate eigenstate of total Hamiltonian
previously proposed by Glaser and Killén® He also defined a ZAfactor by the normali-
zation constant of this state, which was interpreted as the dissociation probability (of
course 0<<L<1). This Z-factor, however, has a curious property, namely it tends to
one half instead of unity at the weak coupling limit, provided that all other interactions
are switched off. This fact probably gives rise to theoretical difficulties.* We therefore
investigate further the clothed state of an unstable particle.

Now, as a preliminary, we briefly review the second definitions of the mass and
life presented by Araki et al.,. which seem to have the most " essential meaning. For
simplicity, we employ Lee’s model® for the time being. The total Hamiltonian is given

by
H=m0 Sby* ¢V —l-mN(/JN* ¢N+ j(ﬂkw‘k* Cﬂkdk

010 oo [ 16 ) /v T b gy [ (G v/ T k). 1-1)

* From this standpoint, the usual perturbarional approach to weak interactions would become inadequate.

Further, for example, the charge independence would he violated, since proton is stable while neutran is
unstable. '



Decay amplitude of an unstable particle V:
(- IV) = (n| Ue,0)|V) |
where
|n~) : incoming-wave eigenstate of the
total Hamiltonian H
|V) : barestate of V

X0,0) : wave matrix

S—matrix element of the transition n <« m:
(- |m*) = (n| W(,0) + IX0,-°)|m)
where
|m+) : outgoing-wave eigenstate of the
total Hamiltonian H

|m) : bare state of m

The treatment is quite unsymmetrical !!

If one naively substitutes |V) into |m) , then the

corresponding S—matrix element exactly vanishes !!
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Here the notations are as follows.
my : bare mass of a V-particle.
my: mass of an N-particle.
ty k and w,=v I-F4#: mass, momentum and energy of a f-particle, respectively.
¢ : unrenormalized coupling constant. '
G(w,) : cutoff function, which is assumed to be regular.
$*, Py s dn®s Py ¥, ap: field operators of V-particle, N-particle and 6-

particle, respectively.

The modified propagator of a F-particle, §,/(E), is given by the following formula:

G*(on) | dk
2w, wyt+my—E—i&

[Sv’(E)]“=E—mo+iE+92S , (§=>4+0). (1-2)

If the equation which is obtained by putting the right-hand side of (1-2) equal to zero
has a real root, say, E=m, then m represents the mass of the stable FV-particle because
of m< my+ ¢ which is evident from the integral in (1-2). So, in order to obtain the
mass of the unstable V-particle, we must analytically continue [§y'(E)]™ to the .complex
plane of E. But {8,/ (E) ]_l'has no zero point on
the Riemann plane with cut along the real axis from
the branching point, my+ #, to +co. Hence we
* consider the analytic continuation to the lower half- Y %
plane from the side of Re E>my+ £ Then for E '
on the lower half-plane the path of wyintegration

Fig. 1

must be deformed as in Fig. 1 on the wyplane. The integral therefore is written as
the sum of the integral along the real axis and of the residue of a pole, w,=E—my,

that is to say,

+ o — ‘
/ 1 . [ G (”))1/‘”2_"'#2
[SV (E)] =E—m+279 j w+my-—E de
l,l, .
+ (2m)%g* G2 (E—my)V/ (E—my)*—#,  (for Im E<0), (1-3)

The equation which is obtained by putting the right-hand side of (1-3) equal to zero
generally has complex roots. For simplicity, we assume that the equation has only one

root, say, E=my—ir/2, i e.
(83 (my—ir/2) 7} ==0. 1-4)

my and 77! are interpreted as the physical mass and the life of the unstable P-particle,
respectively.

Now, in the case of the stable particle, its mass is defined not only as the pole of
modified propagator like (1-4) but also as the one-patticle-state 'eigem}alue of total
Hamiltonian. For the unstable particle, however, such an eigenstate does not exist, since
the scattering states alone form a complete set.”® This corresponds to that (1:2) has

no zero point. But as we have obtained a zero point by the analytic continuation like
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(1-3), there should exist the corresponding eigenstate. To get this state needs, so to
speak, the aﬁalytic continuation of state-vector, which is not a known notion. = So we
introduce a new notion, *“complex distribution”, in the next section. In § 3, we explicitly
construct the eigénstate of total Hamiltonian with the eigenvalue my—iy/2 by using the
complex distribution. But this state is not contained in the conventional Hilbert space
and is not observable. In §4, we define the physical state of the unstable V-particle
by an approximate one to the above eigenstate, and show that its properties are physically
reasonable. In § 5, generalizations are presented.  Finally, ‘we discuss the fundamental
postulate of quantum field theory in the light of the complex distribution.

§$2. Definition of complex disiribution

Consider a meromorphic function, F (@), and two fixed points, « and 4, in a domain
D.  For any arbitrary function, @(w), regular in D, we consider an integral,

Flol=| o () F (w)do,

as a linear functional of ¢ (w). This functional is not well defined by F(w) alone, but
we must further indicate which side of each pole of F(w) the path of integration passes
through. We call the meromorphic function with such indications * complex distribution ”
as a generalization of Schwartz’s distribution.” ' .

In the following we choose £ and + o as the end peints of the path. The indi-
cations for choosing the path are denoted by the following notations.

1/(@™—c) : The path passes through above the pole w=c. )
2-1
1/(@—=c) : The path passes through below the pole w=c.) (

Then we evidently have*
{1/ (0=} =1/ (e —c¥), }
A/ (@ =0} *=1/ (0™ —*)

for complex conjugation. The-difference between the both of (2-1) is nothing but the
contribution from the pole. We therefore define complex d-function as follows :

270 (w—c) =1/ (0 —c) —1/ (' —0). ' (2-3)

(2-2)

From (2-3) we immediately get

jgﬂ(w)a(w——c)dw——mga(c), (2-4)
3

* This is because

[[dwe@/tr—g1= { dop* @)/ (@11,

It must be noticed that w is not a definite complex number but an analytic variable, and Rew, Im o and
@* are meaningless.
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land B .
[B(w—o) =8 (w—c*) (2-5)
because of (2- 2). Hence we have :
X[B(w—c)]".‘ﬁ(w-——c)dm-——o, (for Im ¢ 0). (2-6)
[.l.

The definitions of the derivatives of the complex §-function are straightforward. C'omplex'
distributions can generally be represented by usual functions and complex O-functions by using
(2-3).

In the above, complex distributions are defined only for the integrations from p
to 4+co. Though no other integrations are needed in the next section, it is necessary
for the general case that complex distribiuton should be defined for the more general
integrations. A convenient generalization to the integrations between two real points, «
and b, is as follows: the path runs according to its indication only for the each pole
whose real part is between « and b. Then the simple additivity of integrations is satisfied.
In particular, consider the case in which ¢ in (2-1) is reall The complex distribution
then reduces to the well-known distribution, 1/(w—c*i€), (E->+0). The former
thus is a straightforward generalization of the latter to the case in which the pole is
apart from the real axis by a finite distance.

Finally, in the case of two analytic variables a complex distribution, 1/{w{™—w{"),
is defined as follows :

j‘wdculdwz“:"gm&uldwg, (2:7)

Wi —wit o, — wy—iE
for any analytic function, ¢ (@, wy), and ] _
8 (w,—¢) /(0§ — i) =8 (w,— ) / (c— i),
8(w,—¢) /(@i —w§) =0 (w,—¢) / (wi™ —0) }

for complex d-functions and likewise for their derivatives. The following identities then

(2-8)

can be easily verified.

1 1 1 1 N
- ( (u( - = )! (2 ) 9)

(07 —¢) (i —wit) T e —c N af T — o
1 1 ( 1 1 ) (
= — . (2-10
(w{™—¢) (P — i) W —c NV —c  wf—wf? )

§ 3. Exact state of the unstable V-particle

The physical state of the stable V-particle is defined as the exact eigenstate of H

with the eigenvalue m, namely

| (Glw) AV 7w . ' .
‘V>__gj\_(§'1—-:—)ﬁ/17-——ﬂ7kal‘*dklN>’ . . (3-1)
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where |V and |N) respectively stand for the bare-}” state and the N state.

In the case of the unstable V-particle, we obtain the state proposed by MNaito” if
we formally put' m=my—iy/2 in (3-1). But this is, of course, not the .eigf;nstate of
H. This is because the Riemann plane in (1-3) differs from that in (3-1). To get
the former it is necessary to cutve the path of the @, integration like in Fig. 1. But
it is meaningless to curve that in (3-1), since this integration is not mathematical but
purely formal one because of the preseﬁce of a;*. So we make use of the co:ﬂplex
distribution defined in last section in order to indicate the path potentially, that is to

say, we introduce a state

G (wp) [V 20,
Wi b my—mytir /2

|V = V>-—gj w*dE|N). (3-2)

Indeed, this state exactly satisfy the equation,*
H| V)= (my—ir/2) | V). (33)
At first sight (3-3) seems very curious, for H is an Hermitian operator.®* Actually,
from (3:3) we obtain
ir (V| V)y={V|(H*—H) |V )=0. (3:4)

Hence if |¥) had a positive norm, 7 would have to vanish. In ‘the present case we

must have
(Vi¥y=o0 ' (3-5)
because of ¥ 7 0. (3-5) is verified also by the following direct calculation. From (2-2)
we have
G* () dk
Zawy (0 +my—my—iy [2) (@f7 +my—my iy /2)
(3-6)
The path of the integration is shown in Fig. 2, that is, (3-6) is rewritten as
G? () dk
240y ‘ (wptmy—mp)+ (7/2)7

FVy=1+¢|

VPo=1+¢*

real axis
22 Re[G (my—my—ir/ D)V Grp—rin—T D= /1. (3°7)
Making use of (1:3) we have

* Though the commutation relation naturally is [ak, emw™] =8k —k’), this is no longer the usual

&-function, but the complex distribution defined by
8 (k-—k) = (kup) 18 {0wp—wz’) 8(cos§—cos ¢} 8 (p—¢’, (mod. 2m)),

whete £, 8, ¢ and ¥, 8/, ¢’ are the polar coordinates of k and K, respectively. But this expression is un-
necessary in the actual caleulations. ’

** Srrictly speaking, the Hermiticity of an operator is meaningful only when its operand is designated.
We have extended not the basic vectors (| ¥}, ax®| N)) but the distributions as their coefficients. Since we
have defined the complex distrituticn so as to be consistent with the usual complex conjugation, the Hermi-
ticity of H (in the generalized sense) is mot injured at all.
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PWy=— 1/ T[S (37 / DT 6B
We thus obtain (3-5) because of (1-4). .
Thus there has appeared a zero-norm state in our

Hilbert space. Our Hilbert space is a little wider than the
conventional one, since the former contains negative- norm #

states. But it is not represented by the well-known mdeﬁmte N -
8)

m,—m,+itf2

metric device. Incidentally, the positive-norm restriction

is very additional in the mathematical definition of the = iTf2
abstract Hilbert space. So the general Hilbert space with
indefinite norm is not necessarily represented by indefinite

metric. Indeed, .our Hilbert space is such an example, and we can construct a consistent
theory.

Fig. 2

Tn the unstable case we know that N-# scattering states form a complete set. DBut
as |V) is a new eigenstate of H, its expansions by complete sets arc of interest.

(i) Incoming states

N-§ incoming-wave eigenstates are given by

N0 (p) ) =g 5y Gk a1V

Wy

j[a(k P —g ) s Sy/* (my )JG(fﬂk)/1/2w

1/“_‘ (.,.) (U( ) k] L*dk |N>.

(3-9)
Here the complex-distribution notation is used instead of the usual —if convention in

the denominator of the last term.* The modified propagator, 8/ (E), likewise is written
as

2 G2 2 ;
8/ @' =E-mtg [ -ZOO2% e (320)

in terms of complex distribution. This is equal tor (1-2) for Im EZ>0 and to (1-3)
for Im E<0. A straightforward calculation of (N g(p)~ |V yields

(NO(p)~|V)=—2rig{G (w,) /1/5(;;} B(cup—l—mN—mp_—l—iT/Z), ' (3- 1'1)

where we have made use of (2-9), (3-10), (1-4) and (2-3). (3-11) naturally is
consistent with ,

(@p+my—mp+ir/2) (NI (p)~|V ) =0, (3-12)
which follows from
H|NG(p)~)= (my+w,) INO(P) ™) (3-13)
and (3-3). From (3-11) |V) is expanded into

* This replacement naturally does not change the usual properties of this state, e. g. its normalization.
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V3= —2mig | ‘f/(;"p) 8(@p+my—mptir/2) [NO(p)dp . (3-14)
in terms of the complete set of |[NO(p)™). (3-14) is verified also by ‘substituting
(3-9) in its right-hand side, where a formula, )

8y * (mp—ir/2) = —[27ig? § G* () O (witmy—mp+iy/2)dk]™, (3-15)
20,
which follows from

[Sv’*(E)]_1=[SV,(E)J‘lfzﬂigzym3(cuk—|—mN—-E)dk (3-16)

2wy
and (1-4), should be taken into account.
~ (ii)) Out-going states
The out-going states similarly are

INO(p)*+) =g ‘f/(@ Sy (my+awt) | 7

G (@) o 96 (@) [V 2wy
+[[30—p) =g 52 8 (e */(y,"j gt dk|Ny.  (3-17)

Since |N§ (p) *Y’s are also the eigenstates of H, it should be

(NO(p) | V) oc 8 (w, +my—my+ir/2)

like the above. The coefficient, however, turns out to be equal to zero. This is because
the O-singularity coincides with the singular point of (3:17), and so the expansion
corresponding to (3-14) becomes an indefinite form, 0Xco. This is not a defect
characteristic of complex distribution, but a general character of distribution. Indeed,
similar singular characters often appear in the conventional scattering problems. To avoid
this dificulty, the states containing a complex parameter E,
| G (ws) [V 201
lVE>E|V>—-Q'§mak*dklN>, (3-18)

whose norm is — (2/7) Im[S,/(E)]™, are introduced. Then making use of (2-10)
we have

(NO(p)*| Vi) = %3( S BT 619)

for which we obtain meaningful expansions.

Now, [{(N#(p)~|¥|* should be the decay spectrum of |V ) apart from the phase-
volume factor, but it turns out to vanish from (3- 11) and (2-6). This is obvious
from the time-dependent Schrddinger equation,

1(8/00)¥ (8) =HY¥ (1), (3-20)
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with 7 (0) =|¥" as the initial condition. From (3-3) we have
T (6) =|V)e ilmyr—irl2)e (3-21)

which monotonously diminishes. But since the norm of ¥ (¢) is always equal to zero,
no inconsistency appears. |V gives rise to no difficulty about the conservation of
probability contrary to the so-called ghost state.”

|F> thus is not observable, and therefore should not be called “ physmal state .
So we call it “exact state of the unstable V-particle ”

§4. Physical state of the unstable V-particlé

The exact state introduced in last section is never observable, as far as one adopts
the present theory of observation, Namely, |V) is a state beyond the  observation
space ” (i.e. conventional Hibert space). So the physical decaying state of the unstable
V-particle should be regarded as an image of |F') projected into the observation space.
Under this idea, a physical state is proposed as an approximate state to |F) with a
positive norm’ in this section.

The very origin of the zero-norm is nothing but the complex 0-function in (3-2).
This circumstance is caused essentially by j[ﬁ(wk—kml\r-—my-i—zrfz) 1% 8 (wpt-my—mp+

ir/2)dw,=0, which would never hold if it were a function. Hence to obtain the positive-
norm state we have only to replace this complex O-function by a usual function. 27i-
8 (wy,+my—thyp-+ir/2) is just the contribution from the pole of 1/ (w,+my—m,-+ir/2),
but the behaviour of the both are completely different away from the pole. Hence we
consider a replacement,

27id (f0k+mzv—mv+if/2) > —fw) [ (wptmy—myp+ir /2), GRS

where f(w) is 2 single-valued, analytic function satisfying the following conditiens.
1) flw)~1 for |w+my—my| <k,
where mp—my— US> > 7.
2)  f(w)=0 effectively, for |w—+my—my|>«,
where @ is real.
3) regular near the real axis.
4) vanishing far away in the lower hg:lf-plane.
Here we have introduced a new parameter, x, so that the value of f(w) at the very
pole and that near w=my—my on the real axis be not appreciably different. The reason
for the minus sign in (4-1) is that the integral along the real axis is effectively equiva-
lent to one round of the pole with the negative direction (cf. conditions 3) and 4)).
A typical example of f(w) 1s

Flw) = B/ (@4 By e—i@rmy—mple,(4.2)

where m, £A<€ /A, and A is the cut-off parameter in G(w). When G (@) is present, the
factor A/ (w?+A%) is unnecessary. If the limits of 7—>0, £—>0 and 41— co are taken
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generally be controlled by experiments, and so the zalculations become futilely complicated.
We therefore propese to use the exact state instead of the physical one in the calculations
including unstable particles. According to this method, we can treat transition matrices of
the decay ot scattering of unstable particles in the same way as in the usual S-matrix theory
of stable particles. This method thus permits to treat unstable particles by the S-matrixz-
theoretical formalism.

§ 2. Physieal state

In this section we employ Lee’s model® for the sake of simplicity. Notations are same:
as in I throughout this paper, unless otherwise indicated. '

According to the scattering formalism of Gell-Mann and Goldberger, the outgoing-
wave eigenstate is obtained by the following adiabatic process :

' . ep (H—my—a )T
|[NO{(p) *y=lim| dT & e v a,*| N> . (z-1)
E»+0) -
This represents a superposition of the incident waves emitted in various times at the pre-
sence of interaction. Quite analogously to this, let us consider the following state :

0 ; —
WE[ dT 7(Tye T 2-2)

which represents the superposition of the }-

7(T) particle amplitudes produced with intensity

, 7.(T). Actually, the phy.‘sf;:al V.particle is

produced in a finite time interval, and so the

state ¥* defined above may be regarded as

the physical unstable state. Here we assime.

that the function 7(T) roughly takes such

a form as Fig. 1. As & must be finite, &

-_11 I 0 T . generally depends on the form of the func-
tion %,(T). The usual choice '

Fig- 1. 7:(T) =ke?  (2.3)

is ‘hot preferable, because it has the following defects.

i) It has a finite tangent at the final time T=0%
if) It does not damp sufficiently rapidly for T-+— co.

The meaning of these respects will be clarified: later. E,, which represents the rest energy
of the V.particle, might be m, for the bare state, but we should use here the renormalized
mass as E,, as is well known. Namely, we put

Ey=mp—ir/2 (2-4)

* This physically means that the production does not become stationary at the final time,
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which is the pole of the modified propagator S;/(E). Hence 7x(T) must damp faster
than at least ¢™” in order to make the integral (2-2) converge. In order to calculate
(2-2), we insert into it the complete set™®

INO(p) *)=9(0,) S5/ (my+w,) [V

+§[ 3 (k—p) —g (w0,) Sy (my+ ) — I ]azk*dklN)
Wp— w,—1
(2-5)
with

g {w,)=g- G(fu,,) / ]/2(0’,, .
We then . obtain

0 ‘ ilm -
W‘:j ;;,,(T)dT[j dp p(w,)e (my+oy, Eo)T[V>

i(m —E)T
+f“’k 9 () Sy* (my+awgye TP TET L wdp Ny

. j‘ ip- (o )ei(mN+m,,—E9) TS
B,

Ma,ﬁdk”\?] , (2-6)

W= wp,—iE

where
£ {wp) =0*(w,) S¢'* (my+ 0,) §5' (my+w,) . (2-7)
By using Lehmann’s spectral representation®
SV,* (mN_]_wk) =§dp _P(_Q’E_)"_, (2.3)
Wy — wp—1C
{2.6) can be rewritten as
Tr=c|V>+ jdp {ew,) SF(cuk, wp) 9 (ewp) a,*dEk|N) , (2-9)
‘where
¢ im —
c=\dp p(w,) j‘a’T 7 (T)e (my+w,—E)T (2-10)
;a.tld

, Oy tos—EQT__ i(my+a,—ET
F(wi, @p)=| ,(T)dT - : . (2e11)

wp— w,—i€

F (e, wp) is regular at w,=aw, and so —i€ in the denominator is unnecessary. F (wre0,)
is rewritten as follows.

Floy w,)= —550_77: (T)

,j" tlmy+aor—Egt
= —1f e dr

—

ez'(mN—l-mp—Eo)TdT j“ ei(w;,—wp)r -
r
' itmm+mp—Eo) (T—7)

|21 dT
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i(my +w,—Eg) T (° dr 1(”’1\?'*“03&:—'_50)?

0
=-—-ij‘ dT e

—ro o

2 (TH1).  (2-12)
. Substituting (2.12) in (2.9) and integrating by parts relating to T, we obtain

, e i
=l >—-§a’p o (ep) Sa’T ot EOT gy 0Cow)
: - d mytap—E,

0 i(m - )
|y =fae AT gy e

=c[|V>—S—J‘“L (1= Flwn)} ak*dk|N>], (2-13)

g+ wp— E,
where
flop=| T ET g (2-14)
with | |
b= vfdp p(,) (4T 7/ (T TTIRT g0

Here the function 5(#) has the following properties : A
-] 0 +o Iz i(m _
D |wd=cfap po) (4T [T+ G20 T —pas [t eI
a - 0

'=1+0(/x) RCED

0 i{m —
i) 4(0) =cfdp (o) [dT 7./ () T, (2-17)

Because 7,/(T) is a sufficiently smooth function and has the values appreciably different
from zero only in the neighbourhood of T=—1 /%, and so the integral approximately
vanishes due to the rapidly oscillating factor. For #(0), #7(0), etc., the same is true,
provided that 7, (T) has the higher  derivatives.

. Now the fingl expression of #™, (2-13), has.completely the same form with the
physical state |F7) given in I, apart from the normalization factor, And, further, we
can prove that f(w,) actually satisfies the four conditions postulated in I.

i) flow~1 for |wptmy—my| <. .
o
Because we then get f(w;) mj h(H)dt~1 from (2-16) for y <.
0
ii) f(wp)~0 for |w,+my—my|> K where w; is real.
Because, f(w;) then vanishes approximately owing to (2-17) for the contribution

from ¢~40 and to the rapidly oscillating factor for that from the other part,
iii) f(w) is regular near the real axis,

The analyticity in the lower half-plane is obvxous from (2.14). Further, the
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of Unstable Particles
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Kyoto University, Kyoto

November 15, 1958

Recently, we have investigated the
clothed states of unstable particles.”?
In the second paper,” we have shown
that the physical state of the unstable
V-particle is given by

|V*)=N-F.(H)|V) (1)
with

F.(H) Ej arl 7, (T) "= =7, (2)

where the notationé are as follows:
|V : bare state,
H: total Hamiltonian,
E,=my,—ir/2,
7.(T) : production-rate function,?
N: normalization constant.

Though we have so far used mainly the
expression of the physical .state, it is
more convenient to use the expression
(1) in the calculation of various quanti-
ties. For example, the decay amplitude
is simply presented by

(VW =N-FAE)(n"|V), (3)
where {n~) is the incoming-wave eigen-
state:  Hln )=EK,n"). (V) is
just the decay amplitude of the bare V-

particle, and the function F.(E,) is
easily calculated (at least numerically)

for a gtven 7.(7). The normalization
constant N is given by

N ={V|Fr(H)F.(H)|V;

I

j dEp(E) | Fu(E) 2, (4)
where

() Ej dnd(E—E){VIn™>] (5)

is Lehmann’s spectral function” Simi-
larly, the time-development of [F™) is
easily calculated, namely

(Fre Ty
=Nﬂj’ dEp(E) | Fu(E) e

for t=0. (6)

The main contribution of the integral
comes out from the pole E=FE, of p(E)
in the lower half-plane. Since F.(E,)
=" odT7.(T)=1, the integral for
E~FE, is essentially the modified propa-
gator Sy (). We therefore obtain®

<V?¢ | e—ﬁ]ﬂl V'll> %NEZ,Qe_iEm, (7)
where

Zi = (B/OE) S (BT oy

Finally, we consider the renormaliza-
tion. The Z-factor is defined by the
probability of the bare V-particle, namely

Z_-_—=—|<V|V“>|9=N2|j dEn(E) F, (E)|.
(8)

We denote the renormalized quantities

by affixing the suffix R. Then we have
| V)u=Z7"(a"|V),
~—] ~ (9)
P (B) =27 p(E),

and (4) and (8) are rewritten as



(ZN?) = = j AE 0, (E)

(B[

‘. (10)
=1} dE p.,(E) F..(B)

The decay amplitude can, of course, be

expressed by the renormalized quantities
alone :

<n'|V"">=‘-c-lF.,_(Eu) <nulv>m (11)

where ¢*=ZN"is given by (10). The
production-rate function 7.{T") can be
calculated, at least in principle, by (11)
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from the theoretical value of {n={Vy,
and the . experimental decay spectrum
(provided that 7.(7T') is real). .
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