1 Two-Body Dirac Equations from Constraint Dynamics

Relativistic two-body bound state wave equations and their connection to quantum field

theory.

An old problem:Eddington and Gaunt in 1928.

One without a generally agreed-upon solution.

Steven Weinberg: "It must be said that the theory of relativistic effects and radiative cor-
rections in bound states is not yet in satisfactory shape.”

Work done in collaboration with Peter Van Alstine, Bin Liu.
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2  The One-Body Dirac Equation

(v-p+m)yp=0 a relativistic version of Newton/s 1st law
With the four-vector substitution
pp — Pu— Ap
for electromagnetic interaction and the minimal mass substitution
m—m+S5
for scalar interactions
(v-(p—A)+m+S)p=0.2 relativistic version of Newton/s 2nd law

Constraint two-body Dirac equations generalize this one to the interacting two-body system.



3 Two-Body Dirac Equations from Constraint Dynamics

1970's, Todorov, Komar, and Van Alstine - Dirac’s constraint mechanics

i) Covariantly controls the relative time variable: eliminated negative norm states and

cirmcumvented the no-interaction theorem.

Combining constraint dynamics with particle supersymmetries, HC and Van Alstine obtained
two-body Dirac equations:

ii) Correct the defects in the Breit equation and in the ladder approximation to the Bethe-
Salpeter equation.

iii) Are manifestly covariant

iv) Yield simple three-dimensional Schrodinger-like forms similar to their nonrelativistic coun-
terparts.



v) Their spin dependence is determined naturally by the Dirac-like structure of the equations.

vi) They have well defined strong potential structures that have passed numerous tests,
reproducing correct QED perturbative results when solved nonperturbatively.

vii) Dirac forms of the equations make unnecessary the ad hoc introduction of cutoff para-
meters generally used to avoid singular potentials.

viii) Relativistic potentials can be related directly to the interactions of perturbative quantum
field theory or (e.g. for QCD) may be introduced semiphenomenologically.



4 TBDE for World Vector and Scalar Interactions.

For particles interacting through world vector and scalar interactions:

Sy = vs1(71 - (p1 — A1) + M1+ 51)¥ =0

Sotp = ys2(v2 - (p2 — A2) +mo + S2)¢ = 0.

i) Provide a non-perturbative or strong potential framework for extrapolating perturbative
field theoretic results into the highly relativistic regime of bound light quarks, in a quantum
mechanically well defined way.

Framework incorporates two related properties:
ii) Minimal interaction structure

i) Compatibility of the two-equations

[S1,S2] = 0.  Originates from presence of supersymmetries



a) leads to a relativistic 3rd law

b) Covariantly restricts the relative momentum and energy while correctly structuring spin-

dependent recoil.



5 Vector Interactions

i) Compatibility conditions forces " hyperbolic” forms

/iy = [1 — cosh(@)lp1 + sinh(G)p2 — 5(0exP G - 12)72

fip = [1 — cosh(G)]pa + sinh(9)p1 + 5(Oexp G - Y1) ™

G(A) : an invariant interaction function from Wheeler-Feynman CFT or QED from eikonal
summation of ladder and cross-ladder diagrams.

1 2
G(A) =— 5 log(1 — —wé) . the total c.m. energy

i) Compatibility condition requires 3rd law and controls relative time

A= A(z,)—3RD LAW — one invariant function



x| is covariant spacelike particle separation

— gt + PH(P - ) covariant spacelike separation perpendicular to P

Y
Tl
(P = —g is a time-like unit vector.)
iii) Dynamics is independent of the relative time in the c.m system

iv) For lowest order electrodynamics,

A=Az |) = —2 From perturbative QFT
T

— /2
T — x—l—.



6 Scalar Interactions

i) Scalar potentials S given in terms of G(A(z )) and invariant functions M1(z | ), Ma(x 1),
related to each other by

o 7 8M1
Si1 = M — — A

1 1 —my — 5 exp G(A)va - 57
. ) 81\42

)

My — mz—geXPQ(A)Vl ST

Mi = mq cosh L +mpsinh L

M, = my coshL +mq sinh L’ -3RD LAW —one invariant

ME—M3 = md—mf =

i) Counterpart to invariant .A for scalar interactions is S ; L = L(S(z 1), A(xz)) from

M12 = m% + exp G(A)(2mwS + 52)
M35 = m5 + exp G(A)(2mwS + 52).

iii) Retardative effects are embodied in the c.m. energy dependence.



iv) Two-body Dirac equations a three-dimensional but manifestly covariant rearrangement

of BSE
v) Interaction < instantaneous in the c.m. system, a direct consequence of the compatibility

of the two equations

vi) Bypasses difficulties of the Bethe-Salpeter equation



7 Manifestly Covariant and Quantum-Mechanically Well-
Defined.

i) Covariant Schrodinger-like forms (with p the relative momentum)

(p2 + dy(o1,02,p1, A(r), S(r)v = b?(w)1p — From Pauli reduction of CTBDE

i) Two-body Relativistic kinematics

1

2 4 2 2\ 2 2 2\2
b*(w) = '42?2("“ — 2(m§ + mz)w” + (m] — m3)")
= 5%0 T m%ua
mi1mo w2 — m% — m%
My = y Ew —
w 2w

iii) One can solve i) nonperturbatively for both QED and QCD bound state calculations

iv) Every term in (01, oo, 1, A(r), S(r)) is less singular than —1/4r2.



v) Schrédinger-like forms can be transformed into at most 2 coupled wave functions even
when non-central tensor forces or spin-difference-orbit interactions are present.

vi) All portions of the 16 component wave function play essential roles in spectral calculations,
either directly or through the strong potential structures that they generate when eliminated.

vii) The specific expressions of the spin dependent potentials that appear in the quasipotential
®,, are dictated by the interaction structure of the Two-Body Dirac Equations and are not
put in by hand.



8 Strong Potential Terms

i) Recast Schrodinger-like form of Two-Body Dirac equations into minimal coupling form
(p2 + (mw -+ S)2 — (Sw — A)2 —+ q)sp(O']_, 02,P 1, A(’l"), S(’I")))?,D — 0
in which

by = Ppif-p+Ppr+ Psol - (014 02) +Psopl (o1 —02)
+®opolL - (01 X 02) + ®g501 - 02 + ®ro1 - Foa - F 4+ Pprf -poy-Foz T

i)
d;, = d,(A,S) ; A,S fix the potential terms

iii) No freedom to parametrize the numerous ®; forms independently.



iv) Minimal and ®sp: “strong potential” terms can be treated nonperturbatively.

v) Contrast main spin-spin term with that of Fermi-Breit.

2A . 10‘1 - 0'282.A

1
(Two — Body Dirac) — oL 0,0°In(1 — =) Breit

w "3 m1+mo



0 Nonperturbative Validity of Strong-Potential Forms

i) Solving analytically and numerically to obtain the standard fine and hyperfine spectra of
QED.

i) E.g. for the singlet positronium system with A = —a/r

2 2 4
o _ o 21lo
w=m |2+2/ |1 =m(2 — - )ground state

\ \ \ +(n—|—\/6+%)2—a2_l—%)2 4 64

of the fully coupled system of 16-component equations

S19 = S = 0.

iii) Such validation ought to be required of all candidate equations for nonperturbative quark
model calculations and other semiphenomenalogical applications when their quark-model
kernals are replaced by ones appropriate for QED.

iv) No other approaches have yet been fully tested in this way.



v) Otherwise two body formalisms may lead to possibly spurious nonperturbative predictions.

vi) The Abelian vector structure of electrodynamics carries over to the short distance struc-
ture of QCD.

vii) In order that the equations be appropriate for QCD bound state calculations in that

sector they must give correct answers to the appropriate order in the fine structure constant
o when applied to QED bound states.

viii) This we have checked numerically for a range of angular momentum and radial states
and for equal as well as unequal masses.

ix) Our spin orbit potential is so Jttractive for the 3P, state that it actually turns the
repulsive angular momentum over.

This behavior may have some importance for the sigma meson.



10 Connection to Quantum Field Theory

i) Invariant forms A and S in the CTBDE may be perturbatively obtained from the corre-
sponding quantum field theories.

ii) The connection displays explicitly the elimination of the relative energy in the cm system

duw(p, 01,02, A(r), S(r)) = mid(P - p)K(1 + g)~.

iii) Gives quasipotential in terms of the Bethe-Salpeter kernel K and its projection

K=GK

where
1 1

p%-l—m%—iOp%—l—m%—iO

G = ( — wid(P - p)p (5)

0
7 — b?(w) —10
i< the difference between Bethe-Salpeter and the constraint propagators (with the relativistic
third law delta function.)

iv) Derived by Sazdjian as a “quantum mechanical transform of the Bethe-Salpeter equa- |
tion",



11 Two-Body Dirac Equations and Meson Spectroscopy

11.1 The Adler-Piran Potential

i) A constraint version of the naive quark model for mesons

ii) Adler and Piran obtained their static quark potential from an effective non-linear field
theory derived from QCD.

Vyp(r) = AU (Ar) + Up) (= A+ S).

Since their potential is nonrelativistic it cannot distinguish between world scalar and vector
potentials, simply representing the effect of their sum in the nonrelativistic limit.

iii) It incorporates a running coupling constant form in coordinate space

NU(Ar << 1) ~

rinN\r



iv) It includes linear confinement plus subdominant logarithm terms

C
Vap(r) = Ncir + c2 log(Ar) + \//i\; + ;i +cg5), Ar>2.

v) When used with the nonrelativistic Schradinger equation for light mesons, the Adler-

Piran potential or Richardson potential give meson masses that increase with decreasing |
quark mass.

vi) Such disastrous results are completely turned around using TBDE. Relativistic treatment
essential for light mesons with potentials closely tied to QCD.



12 Relativistic Naive Quark Model

i) Incorporating models a static potential model V = Vap(r) for the quark-antiquark

interaction in a covariant way into our equations:

a) replacing nonrelativistic 7 by \/5132L
b) parcelling out the static potential Vsp into the invariant functions A(r) and S(7).

1€2

C
A = exp(—Br)[Vap — 2]+ 2 4 12,
- T T T

€1€2 _ 4

S =Vap+



ii) We impose that at short distance the potential is strictly vector while at long distance
the vector portion is strictly Coulombic

iii) The confining portion at long distance is (including subdominant portions) strictly scalar.

iv) The relativistic invariance of S and A follows by reinterpreting the variable r as 7 = \/x_ZL
in the c.m. system.

v) Step b) is a partially phenomenological one.
vi ) But once A and S are fixed. so are all the accompanying spin dependences.

vii) Our approach is that of a naive quark model since we ignore flavor mixing and the effects
of decays on the bound state energies.

{



13 Meson Spectroscopy

i) We use the same S, A for all of the mesons
ii) Results are spectrally quite accurate, from the heaviest upsilonium states to the pion.

iii) Notable exceptions are light meson orbital and radially excitations and their spin-orbit

splittings.

iv) With just two parametric functions A and S we are able to obtain a fit about as good
as that obtained by Godfrey and Isgur, who use six parametric functions, basically one for
each type of spin dependence.



MESON MASSES FROM COVARIANT CONSTRAINT DYNAMICS

NAME

HW=3333333333333

. bb 135,
. bb 13 P,
. bb 13P;
. bb 13P,
. bb 235,
. bb 23 P
. bg 23P1
. bb 23
. bb 3357
. bb 435
. bb 535
- bb 6351
: bu 1150
. bd 115,
B* : bu 1351
Bs : bs 115,

EXP.

9.460
9.860
9.892
9.913
10.023
10.232
10.255
10.269
10.355
10.580
10.865
11.019
5.279
5.279
5.325
5.369

THEORY

9.453
9.842
9.889
9.921
10.022
10.227
10.257
10.277
10.359
10.614
10.826
11.013
5.273
5.274
5.321
5.368



Me -
: CC 1351
. cc 11y
. ¢¢ 13 P
. c¢c 13P;
. cc 13P5
. c¢ 218y
. cc 239,
. ¢¢ 13Dy
. CC 3351
. c¢ 23Dy
: CC 33D1

X0

ceeeeIXRE

D :
D :

. b5 135,
cC 1150

cu 115,
cd 1150

- cu 135,
- cd 1351
I CU 13P1
. cd 13P;

5.416
2.980
3.097
3.526
3.415
3.510
3.556
3.594
3.686
3.770
4.040
4.159
4.415
1.865
1.869
2.007
2.010
2.422
2.428

5.427
2.978
3.129
3.5620
3.407
3.507
3.549
3.610
3.688
3.808
4.081
4.157
4.454
1.866
1.873
2.000
2.005
2.407

2.411



D* :

D*
Dy

Dy

cu 13P5

ccd 13P5
. ¢5 115,
. ¢5 1357
D} :

CcS 13P1

. ¢ 13P,

K :su 115
K :sd 115,

K*:
. sd 135
- su 1Py
. su 131,
1 SU 13P1
K5 :

K*
Ko
K>

K*
K*

sU 1351

su 13P;

. sd 13P5
. sw 215
. s 2357
> SU 11D2
K*:

su 13D1

2.459
2.459
1.968
2.112
2.535
2.574
0.494
0.498
0.892
0.896
1.273
1.429
1.402
1.425
1.432
1.460
1.412
1.773
1.714

2.382
2.386
1.976
2.123
2.511
2.514
0.492
0.492
0.910
0.910
1.408
1.314
1.506
1.394
1.394
1.591
1.800
1.877
1.985



Ky : su 13D>
K3 : su 13D3
K*: su 318,
K3 :su23P,
K} :su13F,
K> : su 23D2
Kg D SU 13G5
K3 :su 233
K} : su 23Fy
é: s5 1357
fo: ss 13P,
f1:s513P
fo:s5 13p
¢ :SS 235
¢ : S§ 13D3
fo:ss 23P2
fo: 85 33p,
7 ud 115,
p:ud 135

1.816
1.770
1.830
1.975
2.045
2,247
2.382
2.324
2.490
1.019
1.370
1.512
1.525
1.680
1.854
2.011
2.207
0.140
0.767

1.945
1.768
2.183
2.098
2.078
2.373
2.344
2.636
2.757
1.033
1.319
1.633
1.493
1.850
1.848
2.160
2.629
0.144
0.792



by : ud 11p
ag : ud 13 P,
aj : ud 13P;
an . u—d_ 13P2
7 ud 215
p:ud 2351
T ud 11D,
p:ud 13D4
p3: ud 13D3
7 ud 318,
p:ud 339
pg : ud 13Fy
7o 1 ud 21 D5
p3 : ud 23D3
ps - ud 13Gs
6 : ud 13Hg

1.231
1.450
1.230
1.318
1.300
1.465
1.670
1.700
1.691
1.795
2.149
2.037
2.090
2.250
2.330
2.450

0.0

1.392
1.4901
1.568
1.310
1.536
1.775
1.870
1.986
1.710
2.166
2.333
2.033
2.367
2.305
2.307
2.547
101.0



14 Pion as Goldstone Boson

i) Pion is a Goldstone boson in that mz(mg — 0) — 0.

ii) The p and excited pion have finite mass in this limit

iii) The curve does not follow the Goldberger-Trieman relation

m72TF7T = my.
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15 Two-Body Dirac Equations for Nucleon-Nucleon Scat-

tering

i) The two-body Dirac equations of constraint dynamics provide a natural (Dirac) formulation
to extend the early phenomenological work of Reid to the relativistic domain but with all
aspects of the effective potentials fixed by connections by way of meson exchanges.

i) The mesons we include are the pseudoscalar mesons 7(135),7(548),7'(952) the vector

mesons p(770),w(776), $(1020) and the scalar mesons ¢(600), ag(980), fo(983). The
7, p, and the ag are isovector mesons while the rest are isoscalar mesons.

ili) To incorporate these nine mesons in the context the constraint two-body Dirac equations
we need



16 Two-Body Dirac Equations for General Covariant In-

teractions: The role of supersymmetry

i) Theta matrices.

1 1
o = 7’\/;’757',“ pw=0,1,2, 3, 5= i\/;’757

i) In the “correspondence-principle” limit the they become Grassmann variables

iii) The Dirac equation becomes a constraint imposed on both bosonic (p) and fermionic
(0, 05) variables:

Sotp =(p-0+mbs)yp =0,= So=(p- 0 +mbs) =0



17 Supersymmetry

i) The supersymmetry (generator is p - 6 + 1/ —p?0s) of the free Dirac constraint does not
leave invariant the position four-vector x. It displays pseudoclassical zitterbewegegung.

i) However, the “zitterbewegungless’ position variable is supersymmetric:

1010y

m

FH = xH +

iv) This variable must be modified in the presence of scalar interaction M = m + S to the
self-referent form

160H 05

M (&)

M = M

v) The supersymmetric constraints (both fermionic and bosonic) then become

1
S=p-0+ M(Z)05~0, -{S,8} =H = p®> + M*(&) =~ 0.
1



vi) Since 92 = 0, the expansion of the self-referent form truncates

i0OM(x) - 005
M(z)

M(F) = M(z) +

vi) One arrives back at the Dirac equation by replacing Grassmann variables with theta
matrices and dynamical variables 2 and p with their operator forms.

S =I[p-0+ M(z)fs]v =0
Hop = [p? + M?(z) + 2i0M(z) - 605] = 0.

viii) The supersymmetry realized through the presence of X is a natural feature of both the
free Dirac equation and its standard form for external scalar interaction.



18 Supersymmetric Two-Body Dirac Equations

i) In the presence of interaction, we require the preservation of supersymmetry for each

spinning particle.

ii) Grassmann Taylor expansions of the M truncate. Carrying out those expansions
S1p = (01 -p+ €101 - P+ Mq051 — 0L - 02052051)1) = 0,

Sotp = (=8 - p + €202 - P + MabOss + iOL - 01052051)Y = 0,
provided that



(the relativistic "third law” condition), and

M; = M;(z ).

Mq1 =mq cosh L + mgsinh L, My =myp coshL +my sinh L,

in which
L=L(zy)
with
9L — 3]\1\4/—;1 _ 3]\1)[/-12

N

iii) TBDE are same as in the beginning of this talk when restricted to scalar interactions.

iv) In these coupled Dirac equations the remnants of pseudoclassical supersymmetries are
the extra spin dependent recoil corrections to the ordinary one-body Dirac equations.

v) Rewrite constraints in a form which we can generalize to interactions other than scalar.



vi) Without those terms (which vanish when one of the particles becomes infinitely heavy)

the two equations would not be compatible.



19 Hyperbolic Form of the Two-Body Dirac Equations

for General Covariant Interactions

i) How do we introduce general interactions?

i) We recast the minimal interaction forms of the two-body Dirac equations into one that
generalizes hyperbolic forms we encountered above.

iii) Simple identities such as
cosh?(A) — sinh?(A) = 1

transform minimal interaction forms to

S11) = [cosh(A)S1 + sinh(A)Sa]d = 0,

So1p = [cosh(A)S, + sinh(A)Sq] =0,



in which appear auxiliary constraints defined by

S1v = (S10 cosh(A) 4 Soo Sinh(A))w =0,

Sy1p = (Spg cosh(A) 4+ S1gsinh(A))y =0,
with
A = —051052L(x 1);  Sio = (pi-0;i +mbsi)

iv) The interaction enters only through an invariant matrix function A

v) Both S; and S; constraints are compatible for general A:
[SL SZW =0 and [81782]¢ =0

provided only that
A= A(ZUJ_)



20 Four Polar and Four Axial Interactions

i)For the, polar interactions we find

A(x ) = —L(x )051052 scalar
Alx ) = J(z | )P - 01 P - 05 time like vector
A(x ) =G(z )01 - 02 space like vector
,,A(xL) = F(x )01 05 | 051050 - 01 P - 05 tensor (polar).

ii) Constraint equations for vector and scalar interactions presented at the beginning of talk
are generated in this form by taking 7 =0 with L and the Feynman gauge combination

G=—J.



iii) Constraints for the axial counterparts (note the minus sign) have hyperbolic forms

S1¢ = (cosh(A)Sy — sinh A)S2)p =0

Sph = (cosh(A)Sa — sinh A)Sq)y =0,

in which S and Sy are defined as before while the interactions appear through

A(z ) = C(z)/2 pseudoscalar
Alx) = H(CU_L)ﬁ .01 P - 0505105> time like pseudovector
A(z) = I(z )01 - 021051052 space like pseudovector
Alz)=Y(z1)01] - 0 P - 01P - 05 tensor (axial).

iv) Future research will determine the relative importance of the interactions other than

scalar and vector in meson spectroscopy.



21 Nucleon-Nucleon Scattering

i) A problem recently tackled requiring pseudoscalar interactions as well as vector and scalar

i) With scalar, vector, and pseudoscalar interactions,

C L |
Az ) = —L(z)051052 + G(x )01 - U2 — (2 )
iii) With electromagnetic four-vector condition J(x ) = —G(z ) relating time and space-

like components:

91 . 92 = 91_|_ : 92_|_ - ]5 ¥ 9]_}’\) . 92; Feynman Gauge

iv)Reduction of these two-body Dirac equations to Schrédinger-like form for combined scalar,
time- and space-like vector and pseudoscalar interactions. (Liu (2003) and Long (1998))

Py — ¢SI+¢D+¢SOL'(01+02)+¢5501'02+¢T01°f02-7°+¢50TU1'fﬁz'fL'(U1+<T: ‘



in which (with K = (L +G)/2)

dgr
dp

dsor

dmwS + S% + 2w A — A?
_4sinh2(K) N 2(3G — L) sinh?(K) N 2(L + G)' sinh(K) cosh(K)
1 7"2 3 1r 1 '
+ZLI2 4+ _2_g/2 _ g + 10/2 _ EﬁzL 4+ ﬁzg
TV TV oinh?2 = k2
(3G—L) N (3G—L) sinh“(K) 2S|nh2(K) (L+0)
27 T T

T
éﬁzg-l— o2 -;—Q’C’ N %(C—;L)’ B %Q’L’ N 4G’ cosh(K) sinh(K)

4G’ sinh?(K) _cosh(K)sinh(K) sinh?(K)
+ —2 2 —2 2
T T r

,cosh(K) sinh(K)

T

1-2 3 3 1 1
o262+ 3¢/’ + LG — =C'L - =
2 9 T9C MY Ty 2 7 2
+(2L — 109)’ COSh(K) smh(K) (2L + 6g)/ sinhz(K) N 6COSh(K) smh(B |
_ ; |
T r T
,Sinhz(K) n 2Sinh(K') cosh(K) B (L + G) B (3G — L) sinh(K)«

r2 2r T

—(L + G)

v)This Schrédinger-like form (for equal masses) differs by a scale transformation that elimi-



nates the spin-independent and tensor dependent 7 - p terms from earlier equation.



22 The Meson Exchange Potentials

i) Beyond limitation to the above nine mesons the model dependent assumptions involve
specifying how the correspondmg O Yukawa potentials are included in the three invariant

functions C, L, G = —

i) Strong potential terms are structured by

a) assuming that with

: 1 2A
G= ——log(l——)
2 w

we take
A=A A0
— Earctan(&)ﬁ\ JA > 0. % %
s 2w

where the invariant A is taken as

L exp(—mypT) exp(—mwT) exp(—myT)
A:gng-TQ - P -|—912U = - +gé - ¢



b) For the invariant L we take

M = mlcoshL—|—m25inhL-—:\/m%+G2(2mwS+SZ) S >0

M, = mygcoshL +mysinh L = /m3 + G2(2mwS +52) ;5 >0
1 28

L = —Zlog(l————); S<0 =*x
5 loe(l = =52
and
exp(—moT exp(—m £.T) _ exp(—magT
S=—95 (,F . )—g§c0 ool — g1 2 (=g,

T T

We need these two modifications (**) of our strong potential terms to accommodate large
repulsive vector and large attractive scalar interactions. They will be reflected in correspond-
ing changes in the quasipotential portions.

c) For the pseudoscalar invariant function C

1. -, _ exp(—mgT) exp(—mnT) exp(—m,,T)
C=—|gzT1-T2 "+ g; ! +9727/ —].
w T T T



iii) We model effects of form factors by replacing invariant radius r (=+/23 )by

|

T

with rg a form factor parameter.

iv) In addition we take into account that the vector mesons may have an anomalous “mag-
netic moment” type of coupling

. € =
@m@bh“,v”]wﬂu-

The net result is to include pairs of additional vector and scalar Yukawa interactions
interactions but with opposite signs



23 Phase Shift Analysis

i) We use the variable phase method developed by Calogero. The details are presented In
Phys. Rev C... |

We present here results for three different angular momentum states in n —p scattering.

Clearly this model needs some more attention, particularly a) the inclusion of world tensor
coupling instead of the field theoretic mass shell assumption, b) the inclusion of pseudovector
coupling of the pseudoscalar mesons and c) the off mass shell effects of the vector meson

couplings.
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Figure 1: np Scattering Phase Shift of 15, State
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Figure 2: np Scattering Phase Shift of 35, State



A Experimental
Dirac Equation

A
o

Illlll'lllilllIIIIIIIIIIIIIIIII'IIII

Phase Shift (Pegree)
o

100 200 300
Energy (MeV)

Figure 3: np Scattering Phase Shift of 3Dy State



31 Summary

e Strong Potential form of the two-body Dirac equations tested in QED - spurious results
due to form of wave equations unlikely

e Strong Potential form of the two-body Dirac equations tested in QCD -accurate spec-
tral results throughout most of spectrum - Goldstone -boson behavior -two invariant
potential functions

e Strong Potential form of two-body Dirac equations tested in NN-scattering. Hyperbolic
forms of equation extend to general covariant interactions - Phase shift results promising.

e Covariant and Local Schrodinger-like structure - Simple to implement - able to take ad-

vantage of formalisms developed for the nonrelativistic Schrédinger equation -Microscopic
theory of meson-meson scattering (Barnes and Swanson) and Unitarized quark model
of Térnqvist and Ono

e Direct connection to quantum field theory



