How to parameterize a resonance with finite width (the σ resonance)?

Hanqing Zheng

Peking University

Hadron Spectroscopy, Chiral Symmetry and Relativistic Description of Bound Systems Nihon University Tokyo, Japan Feb. 24 – 26, 2003

The resonance

Breit-Wigner description

In principal the Breit-Wigner description of resonance only works for infinitely small width.

For stable particle,

$$\triangle(p^2) = \frac{1}{p^2 - m^2 + i\epsilon} \,, \tag{1}$$

Example:

$$A \to B + C, \ B \to D + E$$
 (2)

$$H_{eff} = fABC + gBDE , (3)$$

$$\Rightarrow \Gamma_A = \frac{f^2}{16\pi} \frac{m_A^2 - m_B^2}{m_A^3} \; , \; \; \Gamma_B = \frac{g^2}{16\pi} \frac{1}{m_B}$$
 (4)

Ansatz:

$$\Delta_B(p^2) = \frac{1}{p^2 - \alpha + i\beta} \,. \tag{5}$$

Equivalently, Eq. (2) $\equiv A \rightarrow C + D + E$,

Now calculating Γ_A (in the calculation $m_A >> \Gamma_A$ is assumed!!!)

$$\Gamma_A = \frac{f^2}{16\pi} \frac{g^2}{16\pi} \frac{m_A^2 - \alpha}{m_A^3 \beta}.$$
 (6)

$$\Rightarrow \triangle_{BW}(p^2) = \frac{1}{p^2 - m^2 + im\Gamma} \,. \tag{7}$$

Not very good analytical property!

$$\Rightarrow \triangle_{BW}(p^2) = \frac{1}{p^2 - m^2 + i\rho(s)G} \,. \tag{8}$$

The σ resonance is a very broad subject!

$$M_{\sigma} \simeq 500 MeV \; , \; \Gamma_{\sigma} \simeq 640 MeV \; .$$
 (9)

Z. G. Xiao and H.Z., Nucl. Phys. A695(2001)273 (Pole mass: $z_0 \equiv (M - i\Gamma/2)^2$)

\star The analytic structure of the S matrix

$$F(s) \equiv \frac{1}{2i\rho} (S(s) - \frac{1}{S(s)}). \tag{10}$$

$$\sin(2\delta_{\pi}) = \rho F$$
,

$$F(s) = \alpha + \sum_{i} \frac{\beta_{i}}{2i\rho(s_{i})(s - s_{i})} - \sum_{j} \frac{1/2i\rho(z_{j}^{II})}{S'(z_{j}^{II})(s - z_{j}^{II})} + \frac{1}{\pi} \int_{L} \frac{\text{Im}_{L}F(s')}{s' - s} ds' + \frac{1}{\pi} \int_{R} \frac{\text{Im}_{R}F(s')}{s' - s} ds'$$
(11)

 $L = (-\infty, 0]$, $R = [4m_K^2, \infty)$; $F = 2Re_RT(s)$. Similarly (J. He, Z. Xiao and H.Z., Phys. Lett. **B536**,59,2002; Erratum-ibid.**B549**,362, 2002.),

$$\tilde{F} \equiv \frac{1}{2}(S + \frac{1}{S})\tag{12}$$

$$\cos(2\delta_{\pi}) = \tilde{F} = \tilde{\alpha} + \sum_{i} \frac{\beta_{i}}{2(s - s_{i})} + \sum_{j} \frac{1}{2S'(z_{j}^{II})(s - z_{j}^{II})} + \frac{1}{\pi} \int_{L} \frac{\text{Im}_{L}\tilde{F}(s')}{s' - s} ds' + \frac{1}{\pi} \int_{R} \frac{\text{Im}_{R}\tilde{F}(s')}{s' - s} ds',$$
(13)

$$\Rightarrow S(z) = \cos(2\delta_{\pi}) + i\sin(2\delta_{\pi})$$

$$= \tilde{\alpha} + i\alpha\rho(z) + \sum_{i} \frac{\beta_{i}}{2(z - s_{i})} + \sum_{i} \frac{\rho(z)\beta_{i}}{2\rho(s_{i})(z - s_{i})}$$

$$+ \sum_{j} \frac{\rho(z_{j}^{II}) - \rho(z)}{2\rho(z_{j}^{II})S'(z_{j}^{II})(z - z_{j}^{II})} + \frac{1}{\pi} \int_{L} \frac{\text{Im}_{L}\tilde{F}}{s' - z} ds' + \frac{i\rho(z)}{\pi} \int_{L} \frac{\text{Im}_{L}F}{s' - z} ds'$$

$$+ \frac{1}{\pi} \int_{R} \frac{\text{Im}_{R}\tilde{F}}{s' - z} ds' + \frac{i\rho(z)}{\pi} \int_{R} \frac{\text{Im}_{R}F}{s' - z} ds'. \tag{14}$$

Classification of the cut.

The generalized unitarity relation ($S^+S=1$):

$$\sin^2 2\delta_\pi + \cos^2 2\delta_\pi \equiv 1 \tag{15}$$

on the whole complex s plane!

\star The simplest solutions of the S matrix

Simplest solutions = Solutions without dynamical cuts.

1. A bound state pole at $s=s_0$: Scattering length $a=-\sqrt{\frac{s_0}{4-s_0}}$.

$$Re_{R}T(s) = -\frac{1}{4}\sqrt{s_{0}(4-s_{0})}\frac{s}{s-s_{0}},$$

$$Im_{R}T(s) = \rho(s)\frac{ss_{0}}{4(s-s_{0})}.$$
(16)

or the S matrix.

$$S^{b}(s) = \frac{1 - i\rho(s)|a|}{1 + i\rho(s)|a|}.$$
 (17)

2. A virtual state pole at $s=s_0$: Scattering length $a=\sqrt{\frac{s_0}{4-s_0}}$.

$$S^{v}(s) = \frac{1 + i\rho(s)|a|}{1 - i\rho(s)|a|}.$$
 (18)

3. A (pair of) resonance: pole location: z_0 (z_0^*). The S matrix is,

$$S^{R}(s) = \frac{r_0[z_0] - s + i\rho(s)s \frac{\operatorname{Im}[z_0]}{\operatorname{Re}[\sqrt{z_0(z_0 - 4)}]}}{r_0[z_0] - s - i\rho(s)s \frac{\operatorname{Im}[z_0]}{\operatorname{Re}[\sqrt{z_0(z_0 - 4)}]}},$$
(19)

where

$$r_0[z_0] = \text{Re}[z_0] + \text{Im}[z_0] \frac{\text{Im}[\sqrt{z_0(z_0 - 4)}]}{\text{Re}[\sqrt{z_0(z_0 - 4)}]}$$
 (20)

A unique solution of the unitary S matrix with only one resonance pole and without 'dynamical cuts'!

Only when the resonance locates very far from the threshold and $\text{Re}[z_0] >> \text{Im}[z_0]$, and when s is close to $r_0 \simeq \text{Re}[z_0]$ may we go back to the Breit-Wigner solution ($\text{Im}[z_0] > 0$):

$$S(s) \simeq \frac{s - z_0}{s - z_0^*}$$
 (21)

Figure 1: $r_0[z_0]$ as a function of $\text{Re}[z_0]$, fixing $\text{Im}[z_0] = 1$.

Phase motion:

Figure 2: The phase motion of a narrow resonance. $Re[z_0] = 10$, $Im[z_0] = .5$.

Figure 3: The phase motion of a resonance with $Re[z_0] = 4$, $Im[z_0] = .5$.

Figure 4: The phase motion of a resonance with $Re[z_0] = 1.9$, $Im[z_0] = .5$.

Minkowski and Ochs hep-ph/0209225

* The violation of Levinson's theorem

If $r_0 > 4$, the phase pass $\pi/2$ when $s = r_0$ and

$$\delta(\infty) = \pi - \tan^{-1}\left(\frac{\text{Im}[z_0]}{\text{Re}[\sqrt{z_0(z_0 - 4)}]}\right) < \pi .$$
 (22)

Actually,

$$\delta(\infty) - \delta(-\infty) = \pi . \tag{23}$$

\star The problem of a Breit–Wigner description to the σ resonance

A very common parameterization for in the literature

$$S = \frac{M^2 - s + i\rho(s)M\Gamma}{M^2 - s - i\rho(s)M\Gamma},$$
(24)

For a sufficiently large M^2 and small $M\Gamma$ it contains a resonance and a virtual state (The latter is not found by χPT !) If denoting the resonance pole position as z_0 , then,

$$a = \frac{\text{Im}[z_0]}{\text{Re}[\sqrt{z_0(z_0 - 4)}]}$$
, (25)

The scattering length of the two poles are additive and are both positive. Taking $M=400 {\rm MeV}$, $\Gamma=600 {\rm MeV}$ as an example. The scattering length predicted by Eq. (19) is 0.23, and is 2.73 as predicted by Eq. (24)!

It can be dangerous to use Eq. (24)!

\star The the factorization of the S matrix

A unitary matrix divided by any unitary matrix is still unitary. If we single out all poles of an S matrix, we have

$$S^{phy.} = \prod_{i} S^{R_i} \cdot S^{cut} . \tag{26}$$

NO LOSS OF GENERALITY!

 S^{cut} : no longer contains any pole:

$$S^{cut} = e^{i\rho f(s)}$$

$$f(s) = f_0(s) + \frac{s-4}{\pi} \int_{-\infty}^{0} \frac{\text{Im}_L f(s')}{(s'-4)(s'-s)}$$

$$+ \frac{s-4}{\pi} \int_{4m_K^2}^{+\infty} \frac{\text{Im}_R f(s')}{(s'-4)(s'-s)}$$
(27)

Must be non-vanishing. Couple channel effects (or physics at III, IV,... sheets, etc.)

⇒ The phase is additive,

$$\delta(s) = \sum_{i} \delta_{R_i} + \delta_{b.g.} . \tag{28}$$

$$\delta_{b.g.}(s) = \rho(s)f(s).$$

* The background phase

A match between our parameterization and the χPT results in the physical region where χPT is reasonable.

$$\prod_{i} S^{r_i} \cdot S^{cut} \simeq 1 + 2i\rho(s) T^{\chi PT}(s) , \qquad (29)$$

where

$$T^{\chi PT} = T^{(2)} + T^{(4)} + T^{(6)} + \cdots$$
 (30)

We have $f = f^{(2)} + f^{(4)} + \cdots$. Taking I=2,J=0 channel for example.

$$S^{cut} = e^{2i\rho f} \simeq 1 + 2i\rho(f^{(2)} + f^{(4)}) - 2\rho^2 f^{(2)2}$$
$$\simeq 1 + 2i\rho(T^{(2)} + T^{(4)}), \qquad (31)$$

 \Rightarrow

$$f = f^{(2)} + f^{(4)} + \cdots,$$

$$f^{(2)} = T^{(2)},$$

$$f^{(4)} = T^{(4)} - i\rho T^{(2)2} = \text{Re}_R T^{(4)}.$$
(32)

A problem: $S(s) \sim \exp(O(-1/s)) \Rightarrow$ an essential singularity at s = 0! But could be acceptable except in the vicinity of s = 0. (Z. Xiao and H. Z., Chin. Phys. Lett. **20**(2003)342.)

This way of matching with χ PT determines the background phase without introducing new parameters except those pole parameters. Avoiding the disastrous 1st poles given by Padé approximations. G. Y. Qin et~al., Phys. Lett. **B542**(2002)89.

* The form-factor

is also factorizable (single channel problem).

$$A(s) = \prod_{i} A^{R_i}(s) \cdot A^{cut} \tag{33}$$

from Omnés solution,

$$A(s) = \exp\{\frac{s}{\pi} \int_{4m_{\pi}^{2}}^{\infty} \frac{\delta_{\pi}(s')}{s'(s'-s)} ds'\} . \tag{34}$$

Define

$$\bar{A}(s) = \frac{r_0}{r_0 - s - i\rho(s)s \frac{\text{Im}[z_0]}{\text{Re}[\sqrt{z_0(z_0 - 4)}]}} . \tag{35}$$

 $A(s)/\bar{A}(s)$ is analytic on the right.

Figure 5: |A(s)|, the red line; $|\bar{A}(s)|$, the blue line; The green line is the ratio $|A(s)|/|\bar{A}(s)|$. For M=400MeV, $\Gamma=600$ MeV.

Figure 6: |A(s)|, the red line; $|\bar{A}(s)|$, the blue line; The green line is the ratio $|A(s)|/|\bar{A}(s)|$. For M=800MeV, $\Gamma=100$ MeV.