More BES Results

Frederick A. Harris University of Hawaii For Weiguo Li

Hadron Spectroscopy, Chiral Symmetry and Relativistic Description of Bound Systems February 24 - 26, 2003 Nihon University Kaikan, Ichigaya, Tokyo

OUTLINE

- Introduction
- Search for $J/\psi \rightarrow e \mu$
- R Measurement
- QCD tests
- Observation of $\psi'' \rightarrow \pi^+\pi^- J/\psi$
- Summary

- Lepton number conserved in minimal SM.
- Neutrino oscillations imply mixing and lepton flavor violation. (Super Kamiokande, SNO, KamLAND)
- Lepton number conservation may be broken in grand unified, SUSY, and left-right symmetric models.
- Important to test.
- C Use BES 58 M J/ ψ events to search for lepton flavor violation in J/ $\psi \rightarrow e \ \mu$.

Initial selection:

- 2 charged tracks with opposite charge
- No isolated photons
- Good vertex
- 1.45 < P < 1.65 GeV/c</p>
- $\Theta_{12} > 178.5^{\circ}$
- \sim 2.95 < M $_{e \ \mu}$ < 3.25 GeV/c²

Lepton selection: Use BSC and µ system. e's µ's

- No µ hits
- E/p > 0.7

S E/p < 0.3 Good µ hits (< 1

Four candidates found:

RUN No.	140	676	16-	4 19	18	940	1 9 3	1 49
REC No.	168	877	263	352	270	010	91	.96
$M_{e\mu}$ (GeV)	3.1	13	3.1	17	3.2	XO 1	3.1	143
θ_{12}	17	9.5	17	9.8	17	9.6	17	9.5
track	е	μ	е	μ	е	μ	е	μ
$P~({\rm GeV}/c)$	1.591	1.522	1.570	1.543	1.587	1. 6 11	1.605	1.535
E/P	0.7188	0.1758	0.8577	0.1778	0.8835	0.1415	0.7155	0.1035
μ_{hit}^{good}	0	3	0	3	0	3	0	3

Use Monte Carlo to determine geometric efficiencies.

o geo	o geometric efficiencies.					
	channel		MC Efficiency			
	$J/\psi ightarrow ee$	$\epsilon_{ee}-MC$	(61.47±0.02)%			
	$J/\psi ightarrow \mu \mu$	$\epsilon_{\mu\mu-MC}$	(58.32±0.02)%			
	$J/\psi ightarrow \pi\pi$	$\epsilon_{\pi\pi-MC}$	(52.74±0.29)%			
	$J/\psi ightarrow KK$	ϵ_{KK-MC}	(24.38±0.24)%			
	$e^+e^- ightarrow e^+e^-(\gamma)$	$\epsilon_{ee}(\gamma)-MC$	(32.51±0.03)%			
	$e^+e^- ightarrow \mu^+\mu^-(\gamma)$	$\epsilon_{\mu\mu(\gamma)-MC}$	(42.96±0.29)%			

Use ee and $\mu \mu$ events to measure PID efficiency. Use J/ $\psi \rightarrow \rho \pi$ and K* K events to measure PID misidentification efficiencies.

Table 3

The particle identification/misidentification efficiencies.

	regarded as e	regarded as μ
e sample	$95.3\%(1{\pm}0.02\%)$	—
μ sample		19.0%(1±0.6%)
π	$3.6\%(1{\pm}2.1\%)$	$0.46\%(1{\pm}5.98\%)$
K	3.11%(1±5.79%)	0.38%(1±16.8%)

Table 4

The misidentification rates and backgrounds from hadronic channels.

decays	${\it misidentification}$	number of	
	rate	background	
$J/\psi \to \pi\pi$	$1.74 imes 10^{-4}$	1. 49	
${\rm J}/\psi \to KK$	$5.77 imes 10^{-5}$	0.79	
total		2.3	

- > Can not use data for e µ misidentification
- ➢ Monte Carlo estimates 7 e µ background events.
- Conservatively use only hadronic background.
- Obtain upper limit based on 4 events with 2.3 background.

$B(J/\psi \rightarrow e \mu) < 1.1 \times 10^{-6}$ (90% CL)

R Measurement

$$R(s) = \frac{\sigma_{tot}(e^+e^- \to hadrons)}{\sigma_{tot}(e^+e^- \to \mu^+\mu^-)}$$

Improved R values are very important:

• Needed for interpretation of $a_{\mu} = (g - 2)/2$.

Much of the theoretical uncertainty from R - but mostly from $E_{CM} < 2$ GeV region.

M. Davier et al., hep-ph/0208177.

R measurement

Needed to improve precision of α(M²_Z):
 >Uncertainties in α introduced when it is extrapolated to the Z-pole:

$$\alpha(q^2) = \frac{\alpha_0}{1 - \Delta \alpha(q^2)}$$

$$\Delta \alpha(q^2) = \Delta \alpha_l(q^2) + \Delta_{\text{had}}^{(5)} \alpha(q^2) + \Delta_{\text{top}} \alpha(q^2)$$

Dominant uncertainty due to effects of vacuum polarization.

>Experimentally determined R values are used with dispersion relations to determine this.

R measurement

• The Higgs mass determined from radiative corrections in the SM is very sensitive to the uncertainty in $\alpha(M_Z^2)$.

B. Pietrzyk and H. Burkhardt (1997).

BES R Measurement

Determination of R:

$$\begin{split} R = \frac{\sigma_{had}^0}{\sigma_{\mu\mu}^0} = \frac{N_{obs} - N_{bg}}{\sigma_{\mu\mu}^0 \cdot \epsilon_{had} \cdot \epsilon_{trig} \cdot (1 + \delta) \cdot L} \\ N_{bg} = N_{cr} + N_{bm} + N_{ll} + N_{\gamma\gamma} \\ \sigma_{\mu\mu}^0(s) = 4\pi\alpha^2/3s \end{split}$$

Runs

Year	E	Pts	Single	Separated	Time Spent
	(GeV)		Beam Pts	Beam Pts	(days)
1998	2.6 - 5.0	6	1	6	40
1999	2.0 - 4.8	85	7	24	105

~1000 events per energy point

BES R-scan

Results published: J.Z. Bai et.al., Phys. Rev. Lett. 88, 101802 (2002).

69 citations so far; tau mass paper - 93

R Below-10 GeV

BES reduces R errors from 15 – 20 % to an average of 6% in the 2 – 5 GeV region.

Current Status

Burkhardt and Pietryzk have updated analysis [Phys. Lett. **B513**, 46 (2001).]

 $lpha^{-1}(M_Z^2) = 128.936 \pm 0.046$ $\Delta lpha_{
m had}^{(5)} = 0.02761 \pm 0.00036$

Previously:

$$\alpha^{-1}(M_Z^2) = 127.90 \pm 0.07 \text{ (PDG1998)}$$

Shifts Standard Model Higgs mass upward.

Current Status

Experimental R-values below 5 GeV confirm QCD calculations (M. Davier and A. Höcker, Phys. Lett. **B419**, (1998).

Current status

- Low energy R values (< 10 GeV) including BES R data and pQCD used to determine α_s (M_Z):
- (J. H. Kühn and M. Steinhauser, Nucl. Phys. B619, 588, 2001).

$$\label{eq:alpha_s} \begin{split} \alpha_s \left(5 \ GeV \right) &= 0.235 \ ^{+0.047} \ _{-0.047} \\ \alpha_s \left(M_Z \right) &= 0.124 \ ^{+0.011} \ _{-0.014} \end{split}$$

agrees with other determinations, but errors larger.

• Precise BES data from the charm threshold region Allows the determination of the MS quark mass:

 $M_c = 1.304(27) \text{ GeV}$

more accurate than other recent determinations.

Kühn wants 1% R measurements. BESIII?

Inclusive Momentum Spectra and Charged Particle Multiplicities at √s ~ 2 to 5 GeV

- Inclusive hadron production from e⁺ e⁻ annihilations important to test QCD.
- pQCD using the Modified Leading Logarithmic Approximation (MLLA) gives quantitative preditions.
- Many experimental results at high energy; few at low energy.
- Important to test pQCD at low energy.
- Use R-scan data at E_{CM} = 2.2, 2.6, 3.0, 3.2, 4.6 and 4.8 GeV to study:
 - Inclusive momentum spectrum, ξ
 - Multiplicity distribution
 - Second binomial moment, R₂

Inclusive Momentum Spectra and Charged Particle Multiplicities at √s ~ 2 to 5 GeV

- Use same hadron selection as in R-scan measurement.
- Monte Carlo:

Table 1

- Specially developed LUARLW at 3 GeV and below.
- JETSET with tuned parameters from 3 to 4 GeV.
- JETSET with default parameters above 4 GeV.

Background contribution to the hadron sample.				
E_{cm}	N_{had}	Beam-assoc.	e^+e^-	τ pair
(GeV)		(%)	(%)	(%)
2.2	1410	3.82	0.61	_
2.6	4968	3.72	0.48	—
3.0	2030	3.0 1	0.56	—
3.2	1828	4.53	0.35	—
4.6	1 3 15	6.86	0.18	6.98
4.8	1282	8.72	0.14	6.34

2.2 GeV

Inclusive momentum spectrum

 $\xi = -\ln(2p/\sqrt{s})$ CD using MLLA:

$$\frac{1}{\sigma_{had}}\frac{d\sigma}{d\xi} = K_{LPHD} \times f_{MLLA}(\xi, \Lambda_{eff}, N_c, n_f)$$

 K_{LPHD} is overall normalization factor f_{MLLA} is a complex function of ξ N_{C} is a color factor N_{f} is the number of active quarks Only valid: 0 ≤ ξ ≤ ln(0.5 √ s/ Λ_{eff})

	_	
Ecm	Λ_{eff} (MeV)	K_{LPHD}
2.6	$342\pm7\pm23$	$1.523 \pm 0.018 \pm 0.023$
3.0	$325\pm9\pm25$	$1.573 \pm 0.027 \pm 0.026$
3.2	$286 \pm 17 \pm 37$	$1.532 \pm 0.028 \pm 0.052$
4.6	$239 \pm 14 \pm 32$	$1.472 \pm 0.029 \pm 0.039$
4.8	$238 \pm 15 \pm 32$	$1.482 \pm 0.029 \pm 0.038$

Inclusive momentum spectrum

Multiplicity

Second binomial moment, R₂

$$R_2 = \langle n_{ch} (n_{ch} - 1) \rangle / \langle n_{ch} \rangle^2$$

- Measure of hadron-hadron correlations.
- Long standing discrepency with NLO predictions.

$\psi'' \to \pi^+\pi^- J/\psi$

- ψ'' thought to decay entirely to D D-bar. (PDG)
- Lipkin: non D D-bar could be large.
 - H. J. Lipkin, Phys. Lett. B179 (1986) 278.
- ψ'' could decay to $\pi^+\pi^- J/\psi$.
- Kuang using Chen-Kuang potential model: $\Gamma(\psi'' \rightarrow \pi^+\pi^- J/\psi) = 25 \text{ to } 113 \text{ keV}$

Y. P. Kuang, Phys. Rev. D65, 09024 (2002).

• Look for $\psi'' \rightarrow \pi^+\pi^- J/\psi$, $J/\psi \rightarrow I^+ I^-$ using BES 7.3 pb⁻¹ at 3.773 GeV.

 $\psi'' \rightarrow \pi^+\pi^- J/\psi$

Events/Bin 2 (a) 1 P (b) 0.5 4 (c) 2 2.9 2.95 з 3.05 3.1 3.15 3.2 Fitted Mass of l^+l^- [GeV/ c^2]

FIG. 3: Fitted mass of Di-lepton. (a) the mass of e^+e^- , (b) the mass of $\mu^+\mu^-$, (c) combined the mass plots of e^+e^- and $\mu^+\mu^-$ together.

Branching ratio soon.

 $^{\prime\prime} \rightarrow \pi^{+}\pi^{-} J/\psi$

Very preliminary

Summary

• Searched for $J/\psi \rightarrow e \mu$: B(J/ $\psi \rightarrow e \mu$) < 1.1 x 10⁻⁶ (90% CL)

BES has improved the precision of R measurements in the 2 – 5 GeV CM region: shifts SM prediction of Higgs mass up by 50%.

R scan data also useful for testing QCD at low energy.
Observe non D D-bar process ψ" → π⁺π⁻ J/ψ.