Scalar Mesons in Lattice QCD Calculations

Scalar Collaboration

International Symposium on
Hadron Spectroscopy, Chiral Symmetry and
Relativistic Description of Bound Systems
24-26 Feb. 2003 Nihon University

SCALAR Collaboration

- T. Kunihiro, YITP, Kyoto Univ.
- S. Muroya, Tokuyama Women's Coll.
- A. Nakamura, RIISE, Hiroshima Univ.
- C. Nonaka, Dept. Phys., Duke Univ.
- M. Sekiguchi, Fac. of Eng. Kokushikan Univ.
- H. Wada, Fac. of Sci. and Eng.. Nihon Univ.

Objective of Scalar Collaboration

-Confidence level of Sigma Meson (and other scalar meson, к) has been increasing.
Using Lattice QCD, we have been (and will be) addressing the following Question about scalar mesons:
Are you a Pole in QCD ?

We study its features in QCD.

Lattice QCD Calculation

\& Relativistic Formulation

- Quarks are described by Dirac Fermions
\diamond Not a Model
\diamond Apart from numerical limitations, there is no approximation.
\diamond No bound state Calculation
- No potential
- No B-S
- It measures the mass gap in a given channel.

Lattice QCD Calculation (cont'd)

\star Euclidean Path Integral

$$
\begin{aligned}
Z & =\int d U d \bar{\psi} d \psi e^{-\bar{\psi} D \psi-S_{G}} \\
G(x, y) & =\frac{1}{Z} \int d U d \bar{\psi} d \psi H(y) H^{\dagger}(x) e^{-\bar{\psi} D \nu-S_{G}} \\
& \longrightarrow e^{-m|x-y|}
\end{aligned}
$$

$H(x)$: Hadron Operator. For σ meson $H(x)=\bar{\psi}(x) \psi(x)$
$H^{\dagger}(x) \mid 0>$ State with Quantum Numbers specified by H

You should trust Lattice QCD

because it is the First Principle Calculation!

You should not trust Lattice QCD

until the following conditions are satisfied:

- Enough Statistic
- Gauge configurations are generated by Monte Carlo, and there are statistical errors like Experiments.
- Continuum Limit
- Lattice spacing
- Infinite Volume Linait $\rightarrow 0$
- Lattice Volume is large enough to include hadron.
- Chiral Extrapolatiq $2 a)^{4}$
- u and d quark masses on the lattice are large, and extrapolated to zero.

Operator for σ Meson

$\forall I=0$, scalar

$$
\begin{aligned}
\sigma(x) & \equiv \sum_{c=1}^{3} \bar{\psi}_{c}(x) \psi^{c}(x) \\
& =\sum_{c=1}^{3} \sum_{\alpha=1}^{4} \frac{\bar{u}_{\alpha}^{c}(x) u_{\alpha}^{c}(x)+\bar{d}_{\alpha}^{c}(x) d_{\alpha}^{c}(x)}{\sqrt{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{c}=1,2,3 \quad \text { color } \\
& \mathrm{a}=1,2,3,4 \mathrm{Di} \text { Dirac spin }
\end{aligned}
$$

$$
\psi \equiv\binom{u}{d}
$$

Propagator

$$
\begin{aligned}
G(y, x)= & \left\langle\sigma(y) \sigma(x)^{\dagger}\right\rangle \\
= & \frac{1}{Z} \int D U D \bar{u} D u D \bar{d} D d \sum_{a, b=1}^{3} \sum_{\alpha, \beta=1}^{4} \frac{\bar{u}_{\beta}^{b}(y) u_{\beta}^{b}(y)+\bar{d}_{\beta}^{b}(y) d_{\beta}^{b}(y)}{\sqrt{2}} \\
& \left(\frac{\bar{u}_{\alpha}^{a}(x) u_{\alpha}^{a}(x)+\bar{d}_{\alpha}^{a}(x) d_{\alpha}^{a}(x)}{\sqrt{2}}\right)^{\dagger} e^{-s_{g}-\bar{u} W u-\bar{d} W d} \\
= & \frac{1}{Z} \int D U D \bar{u} D u D \bar{d} D d \sum_{a, b=1}^{3} \sum_{\alpha, \beta=1}^{4} \frac{1}{2}\left[\bar{u}_{\beta}^{b}(y) u_{\beta}^{b}(y) \bar{u}_{\alpha}^{a}(x) u_{\alpha}^{a}(x)\right. \\
& +\bar{d}_{\beta}^{b}(y) d_{\beta}^{b}(y) \bar{d}_{\alpha}^{a}(x) d_{\alpha}^{a}(x)+\bar{u}_{\beta}^{b}(y) u_{\beta}^{b}(y) \bar{d}_{\alpha}^{a}(x) d_{\alpha}^{a}(x) \\
& \left.+\bar{d}_{\beta}^{b}(y) d_{\beta}^{b}(y) \bar{u}_{\alpha}^{a}(x) u_{\alpha}^{a}(x)\right] e^{-S_{\beta}-\bar{u} W u-\bar{d} W d}
\end{aligned}
$$

Propagator (cont'd)

$$
\begin{aligned}
& G(x, y) \\
& = \\
& \quad-\left\langle\operatorname{Tr}\left(W^{-1}(x, y) W^{-1}(y, x)\right)\right\rangle \\
& \quad+2\left\langle\operatorname{Tr}\left(W^{-1}(y, y)\right) \operatorname{Tr}\left(W^{-1}(x, x)\right)\right\rangle \Rightarrow \text { - Vacuum contribution } \\
& \quad-2\left\langle\operatorname{Tr}\left(W^{-1}(y, y)\right)\right\rangle\left\langle\operatorname{Tr}\left(W^{-1}(x, x)\right)\right\rangle \square
\end{aligned}
$$

$W^{-1}(x, y): \quad$ Inverse of Fermion Matrix, i.e., Quark Propagators

Propagator (cont'd)

$$
\begin{aligned}
& \left.G(x, y)=-<\operatorname{Tr} W^{-1}(x, y) W^{-1}(y, x)\right\rangle \\
& +2\langle(\sigma(x)-\langle\sigma\rangle)(\sigma(y)-\langle\sigma\rangle)\rangle
\end{aligned}
$$

where

$$
\sigma(x) \equiv \operatorname{Tr} W^{-1}(x, x)=\bar{\psi}(x) \psi(x)
$$

- Vacuum contribution

Lattice QCD simulations of σ

There have been many Lattice Simulations of scalar without the disconnected diagram; "Valence Sigma"

- deTar and Kogut
- Phy.Rev. D36, (1987) 2828.
- Screening masses
- Kim and Ohta
- hep-lat/9609023,hep-lat/9712014
- KS fermions, $\beta=6.5,48^{3} \times 64$
- $a=0.054 \mathrm{fm}, 48 a=2.6 \mathrm{fm}$,

Lattice QCD simulations of σ (cont'd)

- W. Lee and D. Weingarten
- Phys. Rev. D61 (1999) 014015
- Quench
- Mixing of Glue-ball and
- UKQCD C.McNeile and C.Michael
- Phys. Rev. D63 (2001) 114503
- Full QCD
- Alford and Jaffe, Nucl.Phys. B578 (2000)367.
- Quench
- $\sigma=q q \bar{q} \bar{q} \quad E(q \bar{q} q \bar{q})<E(q \bar{q}+q \bar{q})$

W. Lee and D. Weingarten, Phys. Rev. D61 (1999) 014015

Mixing of $\mathrm{q} \overline{\mathrm{q}}$ and glueball ($\mathrm{I}=0, \mathrm{~J}^{\mathrm{PC}}=0^{++}$)
Quenched approximation
Wilson fermion
Plaquette gauge action

```
f
f
\mp@subsup{f}{0}{\prime}(1390) ) || n\overline{n}\mathrm{ quarkonium ( main )}
```

n stands for $u \bar{u}-d \bar{d} / \sqrt{2}$

Lee and Weingarten (cont'd)

$$
\left(\begin{array}{ccc}
m_{g} & E\left(\mu_{s}\right) & \sqrt{2} r E\left(\mu_{s}\right) \\
E\left(\mu_{s}\right) & m_{\sigma}\left(\mu_{s}\right) & 0 \\
\sqrt{2} r E\left(\mu_{s}\right) & 0 & m_{\sigma}\left(\mu_{n}\right)
\end{array}\right) \Longrightarrow\left(\begin{array}{ccc}
f_{0}(1710) & & \\
& f_{0}(1500) & \\
& & f_{0}(1390)
\end{array}\right)
$$

Input:
f0(1710) 1697(4)MeV fo(1500) 1505(9)MeV fo(1390) 1404(24)MeV $m_{\sigma}\left(\mu_{n}\right) \quad 1470(25) \mathrm{MeV}$ $r \equiv E\left(\mu_{n}\right) / E\left(\mu_{s}\right) 1.198(72)$ (Only r is given by Lattice.)

Output:

$$
\begin{array}{cc}
m_{g} & 1622(29) \mathrm{MeV} \\
m_{\sigma}\left(\mu_{s}\right) & 1514(11) \mathrm{MeV} \\
E\left(\mu_{s}\right) & 64(13) \mathrm{MeV}
\end{array}
$$

Lattice:
m_{g} 1654(47) MeV (World Average)
$m_{\sigma}\left(\mu_{s}\right)$ 1322(42) MeV
$E\left(\mu_{s}\right) \quad 43(31) \mathrm{MeV}$

C.McNeile and C.Michael (UKQCD), Phys. Rev. D63 (2001) 114503

Mixing of the Iso-singlet scalar ($\mathrm{I}=\mathbf{0}, \mathrm{J}^{\mathrm{PC}=}=\mathbf{0}^{++}$) and Glueball

Mass with Full QCD << mass with quench

FIG. 5. The scalar mass versus a^{2}. The quenched results $[12,10,13,14]$ are for the scalar glueball and are shown by boxes. The results from $N_{f}=2$ flavors of sea quark are from glueballs [15] (crosses from SESAM) and the lightest flavor singlet scalar we find here (circles).

Lattice QCD simulations of σ

- current going projects -
-Riken-Columbia-Brookhaven
- Domain Wall Fermions
- Quench
- hep-lat/0209132 (Lattice02 Proceedings)
\diamond Scalar Collaboration
- Wilson Fermions
- Felb-Rat0210012 (Lattice02 Proceedings)

Riken-Brookhaven-Columbia

Domain-wall fermions: Good Chiral nature

\diamond Quench: Check the sickness of the quench calculations by quenched chiral perturbation theory.
mass of scalar meson [GeV]

Details of our Calculation (1)

Wilson Fermions (2 flavors)
Plaquette Gauge Action

Full QCD Update by Hybrid Monte Carlo (SX5 at RCNP)
Disconnected Part by Z_{2} Noise Method (SR8000 at KEK)

Details of our Calculation (2)
 - Simulation parameters

Lattice size: $8^{3} \times 16$

$$
\beta=4.8
$$

K $=0.1846,0.1874,0.1891$
well established by CP-PACS, $\mathrm{a}=0.197(2) \mathrm{fm}, \mathrm{K} c=0.19286(14)$ (CP - PACS, Phys. Rev. D60(1999)114508)

Wilson Fermions \& Plaquette gauge action Number of the Z2 noise $=1000,500$

Details of our Calculation (3)

Details of our Calculation (4)

[$\mathrm{k}=0.1846$]
1470 configurations from 720th trajectory
[$\mathrm{K}=0.1874$]
970 configurations from 710th trajectory
[$\mathrm{K}=0.1891$]
400 configurations from 500th trajectory
Separation between configurations are 10 trajectories

Details of our Calculation (5)

κ	m_m /m_p (Our Results)	m_п /m_p (CP-PACS)
0.1846	0.825 ± 0.001	0.8291 ± 0.0012
0.1874	0.760 ± 0.002	0.7715 ± 0.0017
0.1891	0.692 ± 0.005	0.7026 ± 0.0032

Π, ρ, σ mesons ($\kappa=0.1846$)

kappa $=0.1846$ (1470 configurations $)$

o meson propagators
 Connected and Disconnected Parts ($\mathrm{k}=0.1846$)

Effective mass ($\kappa=0.1846$)

Π, ρ, σ mesons ($\kappa=0.1874$)

kappa $=0.1874$ (970 configurations)

o meson propagators
 Connected and Disconnected Parts ($\kappa=0.1874$)

Effective mass ($\mathrm{K}=0.1874$)

п , ρ, σ mesons (к =0.1891)

o meson propagators
 Connected and Disconnected Parts ($\kappa=0.1891$)

kappa $=0.1891$ (400 configurations)

Effective mass ($\mathrm{K}=0.1891$)

$m_{\sigma} \approx m_{\rho}$

к meson

strange scalar $\kappa^{+}=\bar{\psi}_{s} \psi_{u}$ -Connected only

Summary

- Although σ propagators are noisy and we need high statistics, present data suggest that σ appears as a pole of QCD.
- Disconnected diagram dominates at large t.
- $m_{\sigma} \approx m_{\rho}$

Analysis of κ will come soon.
Lattice QCD Study of Scalar mesons was crazy before, but is now recognized as a meaningful work. In one year, it becomes matured and produces reliable data on the scalar mesons.

